

 Developers Workshop
August 13-14, 2009

Stanford, CA
http://NetFPGA.org/DevWorkshop

Copyright © 2009 by respective authors
 Unlimited rights to distribute this work is permitted.

• Program Chairs

• John W. Lockwood: Stanford University
• Andrew W. Moore: Cambridge University

• Program Committee

• Satnam Singh, Microsoft Research Cambridge
• David Miller, Cambridge University Computer Laboratory
• Gordon Brebner, Xilinx
• Martin Žádník, Brno University of Technology
• Glen Gibb: Stanford University
• Adam Covington: Stanford University
• David Greaves: Cambridge University
• Eric Keller: Princeton University

• NetFPGA Sponsors

http://netfpga.org/DevWorkshop�
http://stanford.edu/~jwlockwd/�
http://www.cl.cam.ac.uk/~awm22/�

Welcome from the Program Chairs
• State of the NetFPGA Program

o John W. Lockwood (Stanford University)
 (Slides) pp. 5-16

• NetFPGA at Cambridge
o Andrew W. Moore (University of Cambridge)

 (Slides) pp. 17-23

Session 1: Packet Forwarding
• zFilter Sprouter - Implementing zFilter based forwarding node on a NetFPGA

o J. Keinänen, P. Jokela, K. Slavov (Ericsson Research)
 (Wiki) and (Paper) pp. 24-31

• IP-Lookup with a Blooming Tree Array
o Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gregorio

Procissi, Cristian Vairo, Fabio Vitucci (University of Pisa)
 (Wiki) and (Paper) pp. 32-38

Session 2: Payload Processing
• URL Extraction

o M. Ciesla, V. Sivaraman, A. Seneviratne (UNSW, NICTA)
 (Wiki) and (Paper) and (Slides) pp. 39-44

• DFA-based Regular Expression Matching Engine on NetFPGA
o Y. Luo, S. Li, Y. Liu (University of Massachusetts Lowell)

 (Wiki) and (Paper) pp. 45-49

Session 3: High-Level Programming
• High-level programming of the FPGA on NetFPGA

o M. Attig, G. Brebner (Xilinx)
 (Wiki) and (Paper) pp. 50-55

• NetThreads: Programming NetFPGA with Threaded Software

o M. Labrecque, J. Steffan, G. Salmon, M. Ghobadi, Y. Ganjali (University of Toronto)
 (Wiki) and (Paper) and (Slides) pp. 56-61

• NetFPGA-based Precise Traffic Generation

o G. Salmon, M. Ghobadi, Y. Ganjali, M. Labrecque, J. Steffan (University of Toronto)
 (Wiki), (Paper) and (Slides) pp. 62-68

http://stanford.edu/~jwlockwd/NetFPGA_Developers_Workshop-Lockwood.pdf�
http://stanford.edu/~jwlockwd/NetFPGA_Developers_Workshop-Lockwood.pdf�
http://www.cl.cam.ac.uk/research/srg/netos/netfpga/publications/netfpga-dev-workshop-2009.pdf�
http://www.cl.cam.ac.uk/research/srg/netos/netfpga/publications/netfpga-dev-workshop-2009.pdf�
http://netfpga.org/wordpress/zfilter-sprouter/�
http://netfpga.org/netfpgawiki/index.php/Projects:zFilter�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_6-zFilter-Sprouter.pdf�
http://netfpga.org/wordpress/ip-lookup-with-a-blooming-tree-array/�
http://netfpga.org/netfpgawiki/index.php/Projects:Blooming�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_7-Blooming_Tree-Lookup.pdf�
http://netfpga.org/wordpress/url-extraction/�
http://netfpga.org/netfpgawiki/index.php/Projects:URL�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_9-URL_Extraction.pdf�
http://home.exetel.com.au/pseudi/url_extraction_slides.pdf�
http://netfpga.org/wordpress/dfa-regex/�
http://netfpga.org/netfpgawiki/index.php/Projects:DFA�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_8-DFA_RegEx.pdf�
http://netfpga.org/wordpress/pax/�
http://netfpga.org/netfpgawiki/index.php/Projects:G�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_13-G.pdf�
http://netfpga.org/wordpress/netthreads-programming-netfpga-with-threaded-software/�
http://netfpga.org/netfpgawiki/index.php/Projects:NetThreads�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_10-NetThreads.pdf�
http://www.eecg.utoronto.ca/~martinl/papers/netfpga09.ppt�
http://netfpga.org/wordpress/precise-traffic-generator/�
http://netfpga.org/netfpgawiki/index.php/Projects:PreciseTrafGen�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_14-Precise_Traffic_Gen.pdf�
http://www.cs.toronto.edu/~geoff/nfworkshop09/precisegenslides.pptx�

Session 4: Applications I
• AirFPGA: A software defined radio platform based on NetFPGA

o James Zeng, Adam Covington, and John Lockwood (Stanford University);
Alex Tutor (Agilent)

 (Wiki) , (Paper), and (Slides) pp. 69-75

• Fast Reroute and Multipath
o Mario Flajslik, Nekhil Handigol, James Zeng

(Stanford University- CS344 Project)
 (Wiki) and (Paper) pp. 76-79

Session 5: Testbeds
• NetFPGAs in the Open Network Lab (ONL)

o Charlie Wiseman, Jonathan Turner, John DeHart, Jyoti, Parwatikar, Ken Wong, David
Zar (Washington University in St. Louis)

 (Wiki), (Paper), and (Slides) pp. 80-85

• Implementation of a Future Internet Testbed on KOREN based on NetFPGA/OpenFlow Switches
o Man Kyu Park, Jae Yong Lee, Byung Chul Kim, Dae Young Kim

(Chungnam National University)
 (Wiki) and (Paper) pp. 86-89

Session 6: Applications II
• RED - Random Early Detection

o Gustav Rydstedt and Jingyang Xue
(Stanford University - CS344 Project)

 (Wiki)

• A Fast, Virtualized Data Plane for the NetFPGA
o M. Anwer, N. Feamster (Georgia Institute of Technology)

 (Wiki) and (Paper) pp. 90-94

• A Windows Support Framework for the NetFPGA 2 Platform
o C. Tian, D. Zhang, G. Lu, Y. Shi, C. Guo, Y. Zhang

 (Wiki) and (Paper) 95-101

http://netfpga.org/wordpress/airfpga/�
http://netfpga.org/netfpgawiki/index.php/Projects:AirFPGA�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_17-AirFPGA-Software_Defined_Radio-SDR.pdf�
http://netfpga.org/DevWorkshop/AirFPGA_NetFPGA_Workshop_2009-Slides.pdf�
http://netfpga.org/wordpress/frmp_router/�
http://netfpga.org/netfpgawiki/index.php/Projects:Fast_Reroute_and_Multipath_Router�
http://www.stanford.edu/~hyzeng/paper/frmp_router_NetFPGA_Workshop_2009.pdf�
http://netfpga.org/wordpress/netfpgas-in-onl/�
http://netfpga.org/netfpgawiki/index.php/Projects:ONL�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_12-ONL_Testbed.pdf�
http://www.arl.wustl.edu/~cgw1/presentations/netfpgas_in_onl.pdf�
http://netfpga.org/netfpgawiki/index.php/Projects:KOREN�
http://netfpga.org/netfpgawiki/index.php/Projects:KOREN�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_11-KOREN_Testbed.pdf�
http://netfpga.org/wordpress/red/�
http://netfpga.org/netfpgawiki/index.php/Projects:RED�
http://netfpga.org/netfpgawiki/index.php/Projects:VirtualDataPlane�
http://netfpga.org/netfpgawiki/index.php/Projects:VirtualDataPlane�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_15-Fast_Virtualized_Data_Plane.pdf�
http://netfpga.org/netfpgawiki/index.php/Projects:Windows�
http://netfpga.org/netfpgawiki/index.php/Projects:Windows�
http://netfpga.org/DevWorkshop/NetFPGA_DevWorkshop09_Paper_5-Windows_Framework.pdf�

Photographs from the event

Participants at the NetFPGA Developers Workshop on August 13, 2009 at Stanford University

Live Demonstrations

Questions & Answers

Presentations

John W. Lockwood
and the NetFPGA team at Stanford University

State of the NetFPGA Program

and the NetFPGA team at Stanford University

http://NetFPGA.org/

NetFPGA Dev Workshop 1 Aug 13-14, 2009

Many Thanks
• Developers Workshop Program Chairs

– John W. Lockwood, Stanford University
– Andrew W. Moore, Cambridge University

• Developers Workshop Program Committee
– Satnam Singh, Microsoft Research Cambridge
– David Miller, Cambridge University Computer Laboratory
– Gordon Brebner, Xilinx
– Martin Žádník, Brno University of Technology
– Glen Gibb: Stanford University
– Adam Covington: Stanford University
– David Greaves: Cambridge University
– Eric Keller: Princeton University

• NetFPGA Team at Stanford University

NetFPGA Dev Workshop 2 Aug 13-14, 2009

• The Worldwide NetFPGA Developer Community

Where are NetFPGAs?
– Over 1,000 users with ~1,000 cards deployed

at ~150 universities in 17 Countries worldwide

NetFPGA Dev Workshop 3 Aug 13-14, 2009

NetFPGA Hardware in North America

USA - Jan 2009

NetFPGA Dev Workshop 4 Aug 13-14, 2009

NetFPGA Hardware in Europe
EU - Jan 2009

NetFPGA Dev Workshop 5 Aug 13-14, 2009

NetFPGA Hardware in Asia

NetFPGA Dev Workshop 6 Aug 13-14, 2009

China, Korea, Japan, Taiwan - Jan 2009

NetFPGA’s Defining Characteristics

• Line-Rate
– Processes back-to-back packets

• Without dropping packets
• At full rate of Gigabit Ethernet Links

– Operating on packet headers
• For switching, routing, and firewall rules

– And packet payloads
• For content processing and intrusion prevention

• Open-source Hardware
– Similar to open-source software

NetFPGA Dev Workshop 7 Aug 13-14, 2009

• Full source code available
• BSD-Style License

– But harder, because
• Hardware modules must meeting timing
• Verilog & VHDL Components have more complex interfaces
• Hardware designers need high confidence in specification of modules

Test-Driven Design

• Regression tests
– Have repeatable results
– Define the supported features
– Provide clear expectation on functionality

• Example: Internet Router
– Drops packets with bad IP checksum
– Performs Longest Prefix Matching on destination address

Forwards IPv4 packets of length 64 1500 bytes

NetFPGA Dev Workshop 8 Aug 13-14, 2009

– Forwards IPv4 packets of length 64-1500 bytes
– Generates ICMP message for packets with TTL <= 1
– Defines how packets with IP options or non IPv4

… and dozens more …
Every feature is defined by a regression test

NetFPGA = Networked FPGA

A line-rate, flexible, open networking
platform for teaching and research

NetFPGA Dev Workshop 9 Aug 13-14, 2009

NetFPGA Designs
Project (Title & Summary) Base Status Organization Docs.

IPv4 Reference Router 2.0 Functional Stanford University Guide
Quad-Port Gigabit NIC 2.0 Functional Stanford University Guide
Ethernet Switch 2.0 Functional Stanford University Guide
Hardware-Accelerated Linux Router 2.0 Functional Stanford University Guide
Packet Generator 2.0 Functional Stanford University Wiki
OpenFlow Switch 2 0 Functional Stanford University WikiOpenFlow Switch 2.0 Functional Stanford University Wiki
DRAM-Router 2.0 Functional Stanford University Wiki
NetFlow Probe 1.2 Functional Brno University Wiki
AirFPGA 2.0 Functional Stanford University Wiki
Fast Reroute & Multipath Router 2.0 Functional Stanford University Wiki
NetThreads 1.2.5 Functional University of Toronto Wiki

URL Extraction 2.0 Functional Univ. of New South Wales Wiki

zFilter Sprouter (Pub/Sub) 1.2 Functional Ericsson Wiki
Windows Driver 2.0 Functional Microsoft Research Wiki
IP Lookup w/Blooming Tree 1.2.5 In Progress University of Pisa Wiki
DFA 2.0 In Progress UMass Lowell Wiki

NetFPGA Dev Workshop 10 Aug 13-14, 2009

G/PaX ?.? In Progress Xilinx Wiki
Precise Traffic Generator 1.2.5 In Progress University of Toronto Wiki
Open Network Lab 2.0 In Progress Washington University Wiki
KOREN Testbed ?.? In Progress Chungnam-Korea Wiki
RED 2.0 In Progress Stanford University Wiki
Virtual Data Plane 1.2 In Progress Georgia Tech Wiki
Precise Time Protocol (PTP) 2.0 In Progress Stanford University Wiki
Deficit Round Robin (DRR) 1.2 Repackage Stanford University Wiki

.. And more on http://netfpga.org/netfpgawiki/index.php/ProjectTable

Highlights of this Workshop

• Packet Forwarding
– zFilter based forwarding

node on a NetFPGA
– IP-Lookup with a

• Future Directions
– Panel Discussion

with industry

• Applications IIP Lookup with a
Blooming Tree Array

• Payload
– URL Extraction
– DFA-based Regular

Expression Matching

• High-level programming
G / P k t E (PAX)

• Applications I
– AirFPGA: Software Defined

Radio (SDR) platform
– Fast Reroute & Multipath

• Testbeds
– NetFPGAs in the Open

Network Lab (ONL)
KOREN (K)

NetFPGA Dev Workshop 11 Aug 13-14, 2009

– G / Packet Express (PAX)
– Programming with

Network Threads
– Traffic Generation

with NetThreads

– KOREN (Korea)

• Applications II
– Random Early Detection
– Virtualized Data Plane for

the NetFPGA

C dCards,

Systems

NetFPGA Dev Workshop 12 Aug 13-14, 2009

Clusters

NetFPGA System

CPU Memory

Software
running on a
standard PC

FPGA

1GE

1GE

PCI
PC with NetFPGA

standard PC

+

A hardware
accelerator
built with Field
P bl

NetFPGA Dev Workshop 13 Aug 13-14, 2009

Memory

1GE

1GE
NetFPGA Board

Programmable
Gate Array
driving Gigabit
network links

• Pre-built systems available
– From 3rd Party Vendor

• PCs assembled from parts

NetFPGA Systems

• PCs assembled from parts
– Integrates into standard PC

• Details are in the Guide
– http://netfpga.org/static/guide.html

NetFPGA Dev Workshop 14 Aug 13-14, 2009

Rackmount NetFPGA Servers

NetFPGA inserts in
PCI or PCI-X slot

2U Server

NetFPGA Dev Workshop 15 Aug 13-14, 2009

2U Server
(Dell 2950)

Thanks: Brian Cashman for providing machine

1U Server
(Accent Technology, Inc)

Stanford NetFPGA Cluster

Statistics
• Rack of 40

• 1U PCs
• NetFPGAs• NetFPGAs

• Manged
• Power,
• Console
• VLANs

• Provides 160

NetFPGA Dev Workshop 16 Aug 13-14, 2009

Gbps of full
line-rate
processing
bandwidth

UCSD-NetFPGA Cluster

NetFPGA Dev Workshop 17 Aug 13-14, 2009

Going Forward

NetFPGA Dev Workshop 18 Aug 13-14, 2009

The New 2.0 Release

• Modular Registers
– Simplifies integration of multiple modules

• Many users control NetFPGAs from software

– Register set joined together at build time
• Project specifies registers in XML list

• Packet Buffering in DRAM
– Supports Deep buffering

Si l 64MB t i DDR2

NetFPGA Dev Workshop 19 Aug 13-14, 2009

• Single 64MByte queue in DDR2 memory

• Programmable Packet Encapsulation
– Packet-in-packet encapsulation

• Enables tunnels between OpenFlowSwitch nodes

Module Pipeline

NetFPGA Dev Workshop 20 Aug 13-14, 2009

From: Methodology to Contribute NetFPGA Modules, by G. Adam Covington, Glen Gibb, Jad Naous,
John Lockwood, Nick McKeown; IEEE Microelectronics System Education (MSE), June 2009.
on : http://netfpga.org/php/publications.php

NetFPGA 10G: (Coming in 2010)

QDRII+ SRAM
3x 36bit interfaces, 300MHz+

(each i/f: 1x K7R643684MFC30)

Xilinx Virtex5

XCV5TX240T-2

FG1759

XAUI
4 GTXs

XAUI
4 GTXs

XAUI
4 GTXs

PCIe
8 GTXs

SFI
10Gbps

SFI
10Gbps

SFI
10Gbps

SFI

SFP+
Cage

SFP+
Cage

SFP+
Cage

SFP+

PCIe x8, Gen1
endpoint edge

connector

10 GTXs

XAUI

2 x Samtec
x10 Connector10 GTXs

PHY

PHY
AEL2005

PHY
AEL2005

PHY
AEL2005

NetFPGA Dev Workshop 21 Aug 13-14, 2009

10GbpsCage 4 GTXs

RLDRAM II

2x 32bit interfaces, 300MHz+

NetFPGA 10G

PHY
AEL2005

Going Forward
• NSF Funding at Stanford

– Supports program at Stanford for next 4 years
• Workshops, Tutorials, Support

A d i C ll b ti• Academic Collaborations
– Cambridge, NICTA, KOREN, ONL, …

• Academic Tutorials
• Developer Workshops

• Industry Collaborations
Al L i S t

NetFPGA Dev Workshop 22 Aug 13-14, 2009

– AlgoLogicSystems.com
• Designs algorithms in Logic
• Creates systems with open FPGA platforms
• Uses and contributes to open-source cores
• Provides customized training to industry

Conclusions

• NetFPGA Provides
– Open-source, hardware-accelerated Packet Processing
– Modular interfaces arranged in reference pipeline
– Extensible platform for packet processing

• NetFPGA Reference Code Provides
– Large library of core packet processing functions
– Scripts and GUIs for simulation and system operation
– Set of Projects for download from repository

NetFPGA Dev Workshop 23 Aug 13-14, 2009

j p y

• The NetFPGA Base Code
– Well defined functionality defined by regression tests
– Function of the projects documented in the Wiki Guide

Final Thoughts for Developers

• Build Modular components
– Describe shared registers (as per 2.0 release)
– Consider how modules would be used in larger systems

• Define functionality clearly
– Through regression tests
– With repeatable results

• Disseminate projects
– Post open-source code

Document projects on Web Wiki and Blog

NetFPGA Dev Workshop 24 Aug 13-14, 2009

– Document projects on Web, Wiki, and Blog

• Expand the community of developers
– Answer questions in the Discussion Forum
– Collaborate with your peers to build new applications

8/17/2009

1

NetFPGA in CambridgeNetFPGA in Cambridge

Andrew W. Moore

Computer Laboratory

• Cambridge: not exactly network newcomers
• NetFPGA: right tool / right time
• Teaching

– Masters course (similar to CS344)Masters course (similar to CS344)
– Masters dissertation vehicle (6 month piece of work)
– Undergraduate project vehicle (e.g., TOE implementation)

• Research
– network emulation elements
– implementation vehicle for middlebox ideas
– testing new ideas for a revamped Ethernetg p
– new MACs for new networks (SWIFT) and a prototype
vehicle

– target platform for better development toolchains
• Dissemination

– Tutorials and workshops

8/17/2009

2

• But you may have heard of some of our more
successful projects (some have changed name):

Cambridge? never heard of them

successful projects (some have changed name):

• And some of our not so successful projects:

ATM ‐ (we didn’t want 48 byte payloads either – so very silly)
Sun’s sunray

Cambridge Backbone Ring
1 Gb/s LAN/WAN in 1995

NetFPGA Teaching in Cambridge

• Coursework
– P33 “Building an Internet Router”

– based upon Stanford cs344based upon Stanford cs344

• Graduate Dissertations
– A new Masters course means 6 month dissertations

– (think of them as “PhD qualifiers”)

• Undergraduate Projects
Smallish “Computer Science complete” projects– Smallish Computer Science complete projects
– 2008/9: Peter Ogden implemented a TOE on NetFPGA

8/17/2009

3

P33: “Building an Internet Router”
A Cambridge course from October

• A module in a new single‐year Masters degree
MPhil (Advanced Computer Science)

a “pre PhD” entry programme– a pre‐PhD entry programme.

• Lecturer: me

• TAs: Phil Watts and David Miller

• Ideally 3 groups of 3, current expressions of interest is 22(!)… but many
will fall short of prerequisite requirements.

P i i ll f il bj t (ith th “ j t titi d”) BUT• Principally a pass‐fail subject (with the “project competition reward”), BUT
the subject is on offer to other Masters has a 0‐100 mark scale (60=pass).

This was planned to be a “clone” of cs344

P33: “Building an Internet Router”
(how well will we translate?)

Well not a clone, more a translation:
• Arnie becomes Sean

• Stanford Terms ≠ Cambridge Terms
– so not quite enough weeks… solutions include:

• cut the extension weeks
• bigger groups (classic Brookes law (Mythical Man‐Month) failure)
• do less (e.g. drop the CLI requirement)
• start with more:

(start with CLI and static Ethernet switch)

• A lot more Lecturer contact time (a function of this being a new
module and not having as many helpers as Nick, yet…)

• Entry criteria (Stanford and Cambridge have ECAD (Verilog))
– most of the UK/EU does not (or has VHDL)

Our solution is to seed with a few Cambridge ECAD backgrounded people

8/17/2009

4

NetFPGA‐enabled Research

• network emulation elements

• implementation vehicle for middlebox ideas

• testing new ideas for a revamped Ethernet

• new MACs for new networks (SWIFT) and

– a prototype vehicle for networks that don’t exist

• target platform for better development
toolchains (C# ‐> kiwi ‐> (bluespec) ‐> Verilog)

Middlebox: AtoZ

• AtoZ implements an application‐aware traffic
manager on NetFPGAmanager on NetFPGA

– Application‐detection technology is the “magic in the
box” but the implementation was challenging and
noteworthy

• NetFPGA allows handcrafting to suite testNetFPGA allows handcrafting to suite test
deployments

Look for our paper in ANCS 2009 in Princeton

8/17/2009

5

MOOSE: Addressing the Scalability of Ethernet

• An approach to Ethernet that blurs the boundary of Layer‐2 pp y y
and Layer‐3, through:
– improved routing
– mitigating broadcast/multicast data and
– none of the DHT complexity of SEATTLE

• Currently a software prototype with a NetFPGA
implementation in progressimplementation in progress.

• (Solves similar problems to the “Floodless in SEATTLE”
approach, but in a different/better way…)

Building a new PCI
Multi- host test-bed

Electronic control (FPGA-based)

Logic forHost Arbiter

Control 
Error
analyser

Test
receiver

Data
generators

FPGAs

Control 

4x10
Gb/s

Logic for
path select

Host
sync Switch control

Arbiter

Control  Control 

Sequential multi-host testbed for multi-
wavelength packets with FPGA control

4x10
Gb/s Multi-host

Optical
switch
fabric

Control 

8/17/2009

6

Building a new PCI

• NetFPGA used as a test target in a latency
t d f PCI (ld d)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

study of PCI (old and new)

Look for our paper in ANCS 2009 in Princeton

• NetFPGA‐based prototype network is the
basis of a test network for a new (bufferless)
PCI approach

NetFPGA 2‐Day workshop in Cambridge

• 20 attendees (full house)

• accommodation for non‐locals

• 30% commercial attendees

Next Cambridge workshop: March’10

• (tutorial, workshop or camp…
to be decided)

8/17/2009

7

How might YOU use NetFPGA?
• Build an accurate, fast, line‐rate NetDummy/nistnet element
• A flexible home‐grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)

• Prototype a full line‐rate next‐generation Ethernet‐type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick‐something>

i t lli t• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,

• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co‐processor
• Distributed computational co‐processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)

• intelligent proxy
• application embargo‐er
• Layer‐4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti‐spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP‐enabled device controller (e.g. IP cameras or IP powerme
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for route

h/ fl d (i l) NOX t ll iifferent driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet‐timestamp things
• High‐Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct‐disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route‐reflector
– Internet exchange route accelerator

• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load‐balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints for
• Prototype platform for NON‐Ethernet or near‐Ethernet MACs

– Optical LAN (no buffers)

Next…

• You can do it too….

(Many of you have done it already!)

– Research (even the smallest scale)

– Teaching using the NetFPGA– Teaching using the NetFPGA

– Dissemination of the NetFPGA project…

Implementing zFilter based forwarding node on a NetFPGA

Jari Keinänen, Petri Jokela, Kristian Slavov
Ericsson Research, NomadicLab

02420 Jorvas, Finland
firstname.secondname@ericsson.com

ABSTRACT
Our previous work has produced a novel, Bloom-filter based,
forwarding fabric, suitable for large-scale topic-based pub-
lish/subscribe [8]. Due to very simple forwarding decisions
and small forwarding tables, the fabric may be more effi-
cient than the currently used ones. In this paper, we de-
scribe the NetFPGA based forwarding node implementation
for this new, IP-less, forwarding fabric. The implementation
requires removing the traditional IP forwarding implemen-
tation, and replacing it with the Bloom-filter matching tech-
niques for making the forwarding decisions. To complete
the work, we provide measurement results to verify the for-
warding efficiency of the proposed forwarding system and
we compare these results to the measurements from the orig-
inal, IP-based forwarding, implementation.

1. INTRODUCTION
While network-level IP multicast was proposed al-

most two decades ago [5], its success has been limited
due to the lack of wide scale deployment. As a con-
sequence, various forms of application-level multicast
have gained in popularity, but their scalability and effi-
ciency have been limited. Hence, a challenge is how to
build a multicast infrastructure that can scale to, and
tolerate the failure modes of, the general Internet, while
achieving low latency and efficient use of resources.

In [8], we propose a novel multicast forwarding fab-
ric. The mechanism is based on identifying links in-
stead of nodes and uses in-packet Bloom filters [2] to
encode source-route-style forwarding information in the
packet header. The forwarding decisions are simple and
the forwarding tables fairly small, potentially allow-
ing faster, smaller, and more energy-efficient switches
than what today’s switches are. The proposed (inter-
)networking model aims towards balancing the state be-
tween the packet headers and the network nodes, allow-
ing both stateless and stateful operations [16].

The presented method takes advantage of ”inverting”
the Bloom filter thinking [3]. Instead of maintaining
Bloom filters at the network nodes and verifying from
incoming packets if they are included in the filter or
not, we put the Bloom filters themselves in the packets

and allow the nodes on the path to determine which
outgoing links the packet should be forwarded to.

In this paper, we present the implementation of a
forwarding node on a NetFPGA. At the first stage, we
have implemented the basic forwarding node functions
enabling packet delivery through the network using the
described forwarding mechanism. At the same time we
have been developing a FreeBSD-based end-host imple-
mentation, based on publish/subscribe networking ar-
chitecture, described in [8]. The end-host implements
the packet management, as well as networking related
functions. The present environment supports only sim-
ple networks, but once the first release of the end-host
implementation is ready, larger scale networks can be
created and tested.

We selected NetFPGA as the forwarding node plat-
form because it offers a fast way to develop custom
routers. It provides a way easy to move implementa-
tions directly on hardware by taking advantage of repro-
grammable FPGA circuits enabling prototype imple-
mentations that can handle high speed data transmis-
sion (1Gbps/link). We can also avoid time consuming
and expensive process of designing new physical hard-
ware components.

The rest of this paper is organized as follows. First,
in Section 2, we discuss the general concepts and archi-
tecture of our solution. In Section 3, we go into details
of the implementation. Next, in Section 4, we provide
some evaluation and analysis of our forwarding fabric
Section 5 contrasts our work with related work, and
Section 6 concludes the paper.

2. ARCHITECTURE
Our main focus in this paper is on describing the for-

warding node implementation of the Bloom-filter based
forwarding mechanism referred to as zFilters. In this
section, we describe the basic zFilter operations, and
for more detailed description, we refer to [8].

2.1 Forwarding on Bloomed link identifiers
The forwarding mechanism described in this paper

1

is based on identifying links instead of nodes. In the
basic operation, the forwarding nodes do not need to
maintain any state other than a Link ID per interface.
The forwarding information is constructed using these
Link IDs and including them in the packet header in
a Bloom filter fashion. For better scalability, we in-
troduce an enhancement that inserts a small amount
of state in the network by creating virtual trees in the
network and identifying them using similar identifiers as
the Link IDs. In this section we describe the basics of
such forwarding system, and more detailed information
can be found from [8].

2.1.1 The basic Bloom-filter-based forwarding

For each point-to-point link, we assign two identifiers,
called Link IDs, one in each direction. For example, a
link between the nodes A and B has two identifiers,
−−→
AB and

←−−
AB. In the case of a multi-point link, such

as a wireless link, we consider each pair of nodes as a
separate link. With this setup, we don’t need any com-
mon agreement between the nodes on the link identities
– each link identity may be locally assigned, as long as
the probability of duplicates is low enough.

Basically, a Link ID is an m-bit long name with just
k bits set to one. In [8] we discuss the proper values for
m and k, and what are the consequences if we change
the values; however, for now it is sufficient to note that
typically k ≪ m and m is relatively large, making the
Link IDs statistically unique (e.g., with m = 248, k = 5,
of Link IDs ≈ m!/(m− k)! ≈ 9 ∗ 1011).

The complete architecture includes a management
system that creates a graph of the network using Link
IDs and connectivity information, without any depen-
dency on end-point naming or addressing (creating the
“topology map” or “routing table”). Using the network
graph, the topology system can determine a forwarding
tree for any publication, from the locations of the pub-
lisher and subscribers [16]. In this paper, however, we
assume that such topology management exists and refer
to [8] for more detailed discussion about the complete
architecture.

When the topology system gets a request to deter-
mine a forwarding tree for a certain publication, it first
creates a conceptual delivery tree for the publication
using the network graph. Once it has such an inter-
nal representation of the tree, it knows which links the
packets need to pass, and it can determine when to use
Bloom filters and when to create state. [16]

In the default case, we use a source-routing based ap-
proach which makes forwarding independent from rout-
ing. Basically, we encode all Link IDs of the delivery
tree into a Bloom filter, forming the forwarding zFil-
ter for the data. Once all Link IDs have been added
to the filter, a mapping from the data topic identifier
to the zFilter is given to the node acting as the data

Figure 1: Example of Link IDs assigned for links,

as well as a publication with a zFilter, built for

forwarding the packet from the Publisher to the

Subscriber.

Figure 2: An example relation of one Link ID to

the d LITs, using k hashes on the Link ID.

source, which now can create packets that will be de-
livered along the tree.

Each forwarding node acts on packets roughly as fol-
lows. For each link, the outgoing Link ID is ANDed
with the zFilter found in the packet. If the result matches
with the Link ID, it is assumed that the Link ID has
been added to the zFilter and that the packet needs to
be forwarded along that link.

With Bloom filters, matching may result with some
false positives. In such a case, the packet is forwarded
along a link that was not added to the zFilter, causing
extra traffic. While the ratio of false positives depends
on the number of entries added to the filter, we get a
practical limit on how many link names can be included
into a single zFilter.

Our approach to the Bloom filter capacity limit is
twofold: Firstly, we use recursive layering [4] to divide
the network into suitably-sized components and sec-
ondly, the topology system may dynamically add virtual
links to the system (see Section 2.2.1).

2

Figure 3: Outgoing interfaces are equipped with

d forwarding tables, indexed by the value in the

incoming packet.

2.1.2 Link IDs and LITs

To reduce the number of false positives, we intro-
duced [8] Link ID Tags (LITs), as an addition to the
plain Link IDs. The idea is that instead of each link
being identified with a single Link ID, every unidirec-
tional link is associated with a set of d distinct LITs
(Fig. 2). This allows us to construct zFilters that can be
optimized, e.g., in terms of the false positive rate, com-
pliance with network policies, or multi path selection.
The approach allows us to construct different candidate
zFilters and to to select the best-performing Bloom fil-
ter from the candidates, according to any appropriate
metric.

The forwarding information is stored in the form of
d forwarding tables, each containing the LIT entries of
the active Link IDs, as depicted in Fig. 3. The only
modification of the base forwarding method is that the
node needs to be able to determine which forwarding
table it should perform the matching operations; for
this, we include the index in the packet header before
zFilter.

The construction of the forwarding Bloom filter is
similar to the one discussed in single Link ID case, ex-
cept that for the selected path from the publisher to the
subscriber, we calculate d candidate filters, one using
each of the d values, which are each equivalent repre-
sentations of the delivery tree.

As a consequence, having d different candidates each
representing the given delivery tree is a way to minimise
the number of false forwardings in the network, as well
as restricting these events to places where their negative
effects are smallest. [8]

2.2 Stateful operations
In the previous, we presented the basic, single link,

based forwarding solution. A forwarding node does not
maintain any connection or tree based states, the only

information that it has to maintain is the outgoing Link
IDs. In this section, we discuss some issues that enhance
the operation with the cost of adding small amount of
state on the forwarding nodes.

2.2.1 Virtual links

As discussed in [8], the forwarding system in its basic
form, is scalable into metropolitan area networks with
sparse multicast trees. However, in case of dense mul-
ticast trees and larger networks, increasing the number
of Link IDs in the Bloom filter will increase the number
of false positives on the path. For more efficient oper-
ations, the topology layer can identify different kinds
of delivery trees in the network and assign them virtual
Link IDs that look similar to Link IDs described earlier.

Once a virtual link has been created, each participat-
ing router is configured with the newly created virtual
Link ID information, adding a small amount of state
in its forwarding table. The virtual link identifier can
then be used to replace all the single Link IDs needed
to form the delivery tree, when creating zFilters.

2.2.2 Link failures - fast recovery

All source routing based forwarding mechanisms are
vulnerable when link failures occur in the network. While
the packet header contains the exact route, the packets
will not be re-routed using other paths.

In zFilters [8], we have proposed two simple solu-
tions for this mentioned problem: we can use either
pre-configured virtual links, having the same Link ID
as the path which it is replacing or then we can use
pre-computed zFilters, bypassing the broken link. The
former method requires an additional signalling mes-
sage so that the alternative path is activated, but the
data packets can still use the same zFilter and do not
need any modifications. The latter solutions requires
that the alternative path is added to the zFilter in the
packet header, thus increasing the fill factor of the zFil-
ter, increasing the probability of false positives. How-
ever, the solution does not require any signalling when
the new path is needed.

2.2.3 Loop prevention

The possibility for false positives means that there is
a risk for loops in the network. The loop avoidance has
also been discussed in [8] with some initial mechanisms
for avoiding such loops. Locally, it is possible to cal-
culate zFilter that do not contain loops, but when the
packet is passed to another administrative domain, it
is not necessarily possible. One other alternative is to
use TTL-like field in the packet for removing looping
packets. Work is going on in this area.

3

2.3 Control messages, slow path, and services
To inject packets to the slow path on forwarding nodes,

each node can be equipped with a local, unique Link ID
denoting the node-internal passway from the switching
fabric to the control processor. That allows targeted
control messages that are passed only to one or a few
nodes. Additionally, there may a be virtual Link ID at-
tached to these node-local passways, making it possible
to multicast control messages to a number of forwarding
nodes without needing to explicitly name each of them.

By default such control messages would be simulta-
neously passed to the slow path and forwarded to the
neighboring nodes. The simultaneous forwarding can be
blocked easily, either by using zFilters constructed for
node-to-node communication, or using a virtual Link
ID that is both configured to pass messages to the slow
path and to block them at all the outgoing links.

Generalising, we make the observation that the egress
points of a virtual link can be basically anything: nodes,
processor cards within nodes, or even specific services.
This allows our approach to be extended to upper lay-
ers, beyond forwarding, if so desired.

3. IMPLEMENTATION
In the project, we have designed a publish/subscribe

based networking architecture with a novel forwarding
mechanism. The motivation to choose NetFPGA as
the platform for our forwarding node implementation
was based on our requirements. We needed a platform
that was capable for high data rates and has the flexi-
bility that allows implementation of a completely new
forwarding functionality.

The current implementation has roughly 500 lines of
Verilog code, and it implements most of the functions
described in the previous section. In this section, we
will go deeper in the implementation and describe what
changes we have made to the original reference imple-
mentation.

3.1 Basic forwarding method

Algorithm 1: Forwarding method of LIPSIN

Input: Link IDs of the outgoing links; zFilter in
the packet header

foreach Link ID of outgoing interface do

if zFilter & Link ID == Link ID then
Forward packet on the link

end

end

The core operation of our forwarding node is to make
the forwarding decision for incoming packets. With
zFilters, the decision is based on a binary AND and
comparison operations, both of which are very simple
to implement in hardware. The forwarding decision

Figure 4: Reference and modified datapaths

(Alg. 1) can be easily parallelized, as there are no mem-
ory or other shared resource bottlenecks. The rest of
this section describes the implementation based on this
simple forwarding operation.

3.2 Forwarding node
For the implementation work we identified all unnec-

essary parts from the reference switch implementation
and removed most of the code that is not required in
our system (Figure 4). The removed parts were replaced
with a simple zFilter switch.

The current version implements both the LIT and the
virtual link extensions, and it has been tested with four
real and four virtual LITs per each of the four interface.
We are using our own EtherType for identifying zFilter
packets. The implementation drops incoming packets
with wrong ethertype, invalid zFilter, or if the TTL
value has decreased down to zero.

The output port lookup module and all modules re-
lated to that are removed from the reference switch
design. The zFilter implementation is not using any
functions from those modules.

Our prototype has been implemented mainly in the
new output port selector module. This module is re-
sponsible for the zFilter matching operations, including
binary AND operation between the LIT and zFilter,
and comparing the result with the LIT, as well as plac-
ing the packets to the correct output queues based on
the matching result. The new module is added in out-
put queueus. Detailed structure of the output port selector
module is shown in Figure 5.

3.2.1 Packet forwarding operations

All incoming data is forwarded, straight from the in-
put arbiter, to the store packet module, that stores it
into the SRAM and to the output port selector mod-

4

Figure 5: Structure of the output port selector

module

ule for processing. Packets arrive in 64-bit pieces, one
piece on each clock cycle. The packet handling starts
with initiating processing for different verifications on
the packet as well as on the actual zFilter matching
operation.

The incoming packet processing takes place in vari-
ous functions, where different kinds of verifications are
performed to the packet. The three parallelized ver-
ification operations, bit counter, ethertype, and TTL,
make sanity checks on the packet, while the do zFil-
tering makes the actual forwarding decisions. In prac-
tice, for enabling parallelization, there exists separate
instances of logic blocks that do zFiltering, one for each
of the Link IDs (both for ordinary and virtual links).
In the following, we go through the functions in Figure
5 function-by-function and in Figure 6, the operations
are shown in function of clock cycles.

In do zFiltering, we make the actual zFilter matching
for each 64-bit chunk. First, we select the correct LITs
of each of the interfaces based on the d-value in the
incoming zFilter. For maintaining the forwarding deci-
sion status for each of the interfaces during the match-
ing process, we have a bit-vector where each of the in-
terfaces has a single bit assigned, indicating the final
forwarding decision. Prior to matching process, all the
bits are set to one. During the zFilter matching, when
the system notices that there is a mismatch in the com-
parison between the AND-operation result and the LIT,
the corresponding interface’s bit in the bit-vector is set
to zero.

Finally, when the whole zFilter has been matched
with the corresponding LITs, we know the interfaces
where the packet should be forwarded by checking from
the bit-vector, which of the bits are still ones. While

the forwarding decision is also based on the other veri-
fications on the packet, the combine results collects the
information from the three verification functions in ad-
dition to the zFilter matching results. If all the collected
verification function results indicate positive forwarding
decision, the packet will be put to all outgoing queues
indicated by the bit vector. The detailed operations of
the verification functions are described in 3.2.2.

3.2.2 Support blocks and operations

To avoid the obvious attack of setting all bits to one
in the zFilter, and delivering the packet to all possi-
ble nodes in the network, we have implemented a very
simple verification on the zFilter. We have limited the
maximum number of bits set to one in a zFilter to a con-
stant value, which is configurable from the user space;
if there are more bits set to one than the set maximum
value, the packet is dropped. The bit counting function
calculates the number of ones in a single zFilter and it
is implemented in the bit counter module. This module
takes 64 bits wide input and it returns the amount of
ones on the given input. Only wires and logic elements
are used to calculate the result and there are no regis-
ters inside, meaning that block initiating the operation
should take care of the needed synchronization.

The Ethertype of the packet is checked upon arrival.
At the moment, we are using 0xacdc as the ethertype,
identifying the zFilter-based packets. However, in a
pure zFilter based network, the ethernet is not neces-
sarily needed, thus this operation will be obsolete. The
third packet checking operation is the verification of
the TTL. This is used in the current implementation
to avoid loops in the network. This is not an optimal
solution for loop prevention, and better solutions are
currently being worked on.

The id store module implements Dual-Port RAM func-
tionality making it possible for two processes to access
it simultaneously. This allows modifications to LIT:s
without blocking forwarding functionality. The id store
module is written so that it can be synthesized by us-
ing either logic cells or BRAM (Block RAM). One of the
ports is 64 bits wide with only read access and it is used
exclusively to get IDs for zFiltering logic. There is one
instance of the id store module for each LIT and virtual
LIT. This way the memory is distributed and each in-
stance of the filtering logic have access to id store at line
rate. The other port of the id store module is 32 bits
wide with a read and write connection for the user space
access. This port is used by the management software
(cf. Section 3.2.3) to configure LIT:s on the interfaces.
One new register block is reserved for this access.

One additional register block is added for module con-
trol and debug purposes. It is used to read information
that is collected into the status registers during for-
warding operations. Status registers contain constants,

5

Figure 6: Dataflow diagram

amount of links, maximum amount of LITs and virtual
LITs per link and also the LIT length. In addition,
information about the last forwarded packet is stored
together with the result of the bit count operation, d,
TTL, and incoming port information. This block is also
used to set the maximum amount of ones allowed in a
valid zFilter.

3.2.3 Management software

For configuration and testing purposes, we have de-
veloped a specialized management software. When the
system is started, the management software is used to
retrieve information from the card and, if needed, to
configure new values on the card. The information that
the software can handle, includes the length of the LITs,
the maximum d value describing the number of LITs
used, as well as both link and virtual link information
from each of the interfaces.

Internally, the software works by creating chains of
commands that it sends in batch to the hardware, gets
the result and processes the received information. The
commands are parsed using specific, for the purpose
generated, grammar. The parsing is done using byacc
and flex tools, and is therefore easily extendable.

For testing purposes, the software can be instructed
to send customizable packets to the NetFPGA card,
and to collect information about the made forwarding
decisions. The software supports the following features:

• Selecting the outgoing interface

• Customizing the delay between transmitted pack-
ets

• Varying the sizes of packets

• Defining the Time-to-live (TTL) field in packet
header

• Defining the d value in packet header

• Defining the zFilter in the packet header

• Defining the ethernet protocol field

of Average Std. Latency/
NetFPGAs latency Dev. NetFPGA

0 16µs 1µs N/A
1 19µs 2µs 3µs
2 21µs 2µs 3µs
3 24µs 2µs 3µs

Table 1: Simple latency measurement results

4. EVALUATION
The basic functionality is tested by running simple

scripts that use control software (cf. Section 3.2.3) to
set Link IDs and to generate and send traffic. In prac-
tise, two network interfaces of the test host are con-
nected to the NetFPGA of which one is used to send
packets to the NetFPGA and the other one to receive
forwarded packets. Forwarding decisions are also fol-
lowed by tracking status registers. The results of the
tests show that the basic forwarding functions work on
the NetFPGA, also when using LITs. In addition, the
packet verification operations, counting set bits, TTL
verification, as well as ethertype checking were working
as expected.

4.1 Performance
To get some understanding of the potential speed,

we measured packet traversal times in our test environ-
ment. The first set of measurements, shown in Table
1, focused on the latency of the forwarding node with
a very low load. For measurements, we had four differ-
ent setups, with zero (direct wire) to three NetFPGAs
on the path. Packets were sent at the rate of 25 pack-
ets/second; both sending and receiving operations were
implemented directly in FreeBSD kernel.

The delay caused by the Bloom filter matching code
is 64ns (8 clock cycles), which is insignificant compared
to the measured 3µs delay of the whole NetFPGA pro-
cessing. With background traffic, the average latency
per NetFPGA was increased to 5µs.

To get some practical reference, we also compared
our implementation with the Stanford reference router.
This was quantified by comparing ICMP echo requests’
processing times with three setups: using a plain wire,

6

Path Avg. latency Std. Dev.
Plain wire 94µs 28µs
IP router 102µs 44µs
LIPSIN 96µs 28µs

Table 2: Ping through various implementations

using our implementation, and using the reference IP
router with five entries in the forwarding table. To
compensate the quite high deviation, caused by send-
ing and receiving ICMP packets and involving user level
processing, we averaged over 100 000 samples. Both
IP router implementation and our implementation were
run on the same NetFPGA hardware. The results are
shown in Table 2.

While we did not directly measure the bandwidth
due to the lack of test equipment for reliably filling up
the pipes, there are no reasons why the implementa-
tion would not operate at full bandwidth. To further
test this we did send video stream through our impl-
mentation. During the streaming we did send random
data through same NetFPGA but with different ports
at almost 1Gbs datarate. Both the stream and was for-
warded without a problem. The code is straightforward
and should be able to keep the pipeline full under all
conditions.

IP routers need increasing amount of states, which
increases latency and resource consumption, when the
size of the network increases. On the other hand, in
our implementation, the latency and resource consump-
tion for each node will remain same, independent of the
amount of nodes in the network. Because of that, the
results we got for one node should remain same even
when large amount of nodes are connected to a same
network.

4.2 Resource consumption:
To get an idea how much our implementation con-

sumes resources we did syntetize design with 4 real and
4 virtual LITs per interface. With this configuration,
the total usage of NetFPGA resources for the forward-
ing logic is 4.891 4-input LUTs out of 47.232, and 1.861
Slice Flip/Flops (FF) out of 47.232. No BRAMs are
reserved for the forwarding logic. Synthetisizer saves
BRAM blocks and uses other logic blocks to create
registers for LITs. For the whole system, the corre-
sponding numbers are 20.273 LUTs, 15.347 FFs, and
106 BRAMs. SRAM was used for the output queues in
the measured design. We also tested to use BRAMs for
output queue and the design works. However, we don’t
have measurement results from that implementation.

4.3 Forwarding table sizes:
Assuming that each forwarding node maintains d dis-

tinct forwarding tables, each containing an entry per
interface, where an entry further consists of a Link ID
and the associated output port, we can estimate the
amount of memory needed by the forwarding tables:

FTmem = d ·#Links · [size(LIT) + size(Pout)] (1)

Considering d = 8, 128 links (physical & virtual), 248-
bit LITs and 8 bits for the outport, the total memory
required would be 256Kbit, which easily fits on-chip.

Although this memory size is already small, we can
design an even more efficient forwarding table by using
a sparse representation to store just the positions of
the bits set to 1. Thereby, the size of each LIT entry is
reduced to k · log2(LIT) and the total forwarding table
requires only ≈ 48Kbit of memory, at the expense of
the decoding logic.

5. RELATED WORK
OpenFlow [11] [12] provides a platform for exper-

imental switches. It introduces simple, remote con-
trolled, flow based switches, that can be run on exist-
ing IP switches. The concept allows evaluation of new
ideas and even protocols in Openflow-enabled networks,
where the new protocols can be run on top of the IP
network. However, as high efficiency is one of our main
goals, we wanted to get rid of unnecessary logic and
decided for a native zFilter implementation.

There are not yet many publications where NetFPGA
is used, in addition to OpenFlow and publications about
implementing the NetFPGA card or reference designs.
However one technical report were available [10], about
implementing flow counter on NetFPGA. Authors of
that work used NetFPGA succesfully to demonstrate
that their idea can be implemented in practice.

In addition to NetFPGA, there are also other re-
configurable networking hardware approaches. For in-
stance, [9] describes one alternative platform. There
are also other platforms that could work for this type
of development, for example Combo cards from Liber-
outer project [1]. However, NetFPGA provides enough
speed and resources for our purposes, but Combo cards
might become a good option later on if we need higher
line speeds.

In the following we briefly discuss some work in the
area of forwarding related to our zFilter proposal.

IP multicast: Our basic communication scheme is
functionally similar to IP-based source specific multi-
cast (SSM) [6], with the IP multicast groups having
been replaced by the topic identifiers. The main dif-
ference is that we support stateless multicast for sparse
subscriber groups, with unicast being a special case of
multicast. On the contrary, IP multicast typically cre-
ates lots of state in the network if one needs to support
a large set of small multicast groups.

Networking applications of Bloom filters:

7

For locating named resources, BFs have been used
to bias random walks in P2P networks [3]. In content-
based pub/sub systems [7], summarized subscriptions
are created using BFs and used for event routing pur-
poses. Bloom filters in packet headers were proposed in
Icarus [14] to detect routing loops, in [15] for credentials-
based data path authentication, and in [13] to repre-
sent AS-level paths of multicast packets in a 800-bit
shim header, TREE BF. Moreover, the authors of [13] use
Bloom filters also to aggregate active multicast groups
inside a domain and compactly piggyback this informa-
tion in BGP updates.

6. CONCLUSIONS
Previously, we have proposed a new forwarding fabric

for multicast traffic. The idea was based on reversing
Bloom filter thinking and placing a Bloom filter into the
delivered data packets. Our analysis showed that with
reasonably small headers, comparable to those of IPv6,
we can handle the large majority of Zipf-distributed
multicast groups, up to some 20 subscribers, in realistic
metropolitan-sized topologies, without adding any state
in the network and with negligible forwarding overhead.
For the remainder of traffic, the approach provides the
ability to balance between stateless multiple sending
and stateful approaches. With the stateful approach,
we can handle dense multicast groups with a very good
forwarding efficiency. The forwarding decisions are sim-
ple, potentially energy efficient, may be parallelized in
hardware, and have appealing security properties.

To validate and test those claims, we implemented
a prototype of a forwarding node and tested its per-
formance. As described in Chapter 4, we ran some
measurements on the forwarding node and concluded
that the whole NetFPGA processing for a zFilter cre-
ates a 3µs delay. This delay could most likely be re-
duced, because the forwarding operation should take
only 64ns (8 clock cycles). Comparison with the IP
router implementation was done by using ICMP echo
requests, showing zFilter implementation being slightly
faster than IP-based forwarding, running on the same
NetFPGA platform.

Our simple implementation still lacks some of the ad-
vanced features described in [8], for example reverse
path creation and signaling. However, it should be quite
straightforward to add those features to the existing de-
sign. Also, early studies indicate that it should be pos-
sible to start adding even more advanced features, like
caching, error correction or congestion control to the
implementation.

7. REFERENCES
[1] Liberouter. http://www.liberouter.org/.
[2] B. H. Bloom. Space/time trade-offs in hash

coding with allowable errors. Commun. ACM,

13(7):422–426, 1970.
[3] A. Z. Broder and M. Mitzenmacher. Survey:

Network applications of Bloom filters: A survey.
Internet Mathematics, 1:485–509, 2004.

[4] J. Day. Patterns in Network Architecture: A
Return to Fundamentals. Prentice Hall, 2008.

[5] S. E. Deering and D. Cheriton. Multicast routing
in datagram internetworks and extended lans.
ACM Trans. on Comp. Syst., 8(2), 1990.

[6] H. Holbrook and B. Cain. Source-specific
multicast for IP. RFC 4607. Aug 2006.

[7] Z. Jerzak and C. Fetzer. Bloom filter based
routing for content-based publish/subscribe. In
DEBS ’08, pages 71–81, New York, NY, USA,
2008. ACM.

[8] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar,
and P. Nikander. LIPSIN: Line speed
publish/subscribe inter-networking. Technical
report, www.psirp.org, 2009.

[9] J. W. Lockwood, N. Naufel, J. S. Turner, and
D. E. Taylor. Reprogrammable network packet
processing on the field programmable port
extender (FPX). In Proceedings of the 2001
ACM/SIGDA ninth international symposium on
Field programmable gate arrays, 2001.

[10] J. Luo, Y. Lu, and B. Prabhakar. Prototyping
counter braids on netfpga. Technical report, 2008.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, J. Turner,
and S. Shenker. Openflow: Enabling innovation in
campus networks. In ACM SIGCOMM Computer
Communication Review, 2008.

[12] J. Naous, D. Erickson, G. A. Covington,
G. Appenzeller, and N. McKeown. Implementing
an openflow switch on the netfpga platform. In
Symposium On Architecture For Networking And
Communications Systems, 2008.

[13] S. Ratnasamy, A. Ermolinskiy, and S. Shenker.
Revisiting IP multicast. In Proceedings of ACM
SIGCOMM’06, Pisa, Italy, Sept. 2006.

[14] A. C. Snoeren. Hash-based IP traceback. In
SIGCOMM ’01, pages 3–14, New York, NY, USA,
2001. ACM.

[15] T. Wolf. A credential-based data path
architecture for assurable global networking. In
Proc. of IEEE MILCOM, Orlando, FL, Oct 2007.

[16] A. Zahemszky, A. Csaszar, P. Nikander, and
C. Esteve. Exploring the pubsub
routing/forwarding space. In International
Workshop on the Network of the Future, 2009.

8

IP-Lookup with a Blooming Tree Array: A New Lookup
Algorithm for High Performance Routers

Gianni Antichi
gianni.antichi@iet.unipi.it

Andrea Di Pietro
andrea.dipietro@iet.unipi.it

Domenico Ficara
domenico.ficara@iet.unipi.it

Stefano Giordano
s.giordano@iet.unipi.it

Gregorio Procissi
g.procissi@iet.unipi.it

Cristian Vairo
cristian.vairo@iet.unipi.it

Fabio Vitucci
fabio.vitucci@iet.unipi.it

ABSTRACT
Because of the rapid growth of both traffic and links ca-
pacity, the time budget to perform IP address lookup on a
packet continues to decrease and lookup tables of routers
unceasingly grow. Therefore, new lookup algorithms and
new hardware platform are required. This paper presents a
new scheme on top of the NetFPGA board which takes ad-
vantage of parallel queries made on perfect hash functions.
Such functions are built by using a very compact and fast
data structure called Blooming Trees, thus allowing the vast
majority of memory accesses to involve small and fast on-
chip memories only.

Keywords
High Performance, IP Address Lookup, Perfect Hash,
Bloom Filters, FPGA

1. INTRODUCTION
The primary task of a router is the IP-address lookup:

it requires that a router looks, among possibly several
thousands of entries, for the best (i.e., the longest) rule
that matches the IP destination address of the packet.
The explosive growth of Internet traffic and link band-
width forces network routers to meet harder and harder
requirements. Therefore, the search for the Longest
Prefix Match (LPM) in the forwarding tables has now
become a critical task and it can result often into the
bottleneck for high performance routers. For this rea-
son a large variety of algorithms have been presented,
trying to improve the efficiency and speed of the lookup.

The algorithm here proposed is based on data struc-
tures called Blooming Trees (hereafter BTs) [8], com-
pact and fast techniques for membership queries. A
BT is a Bloom Filter based structure, which takes ad-
vantage of low false positive probability in order to re-
duce the mean number of memory accesses. Indeed,
the number of required memory accesses is one of the
most important evaluation criterion for the quality of
an algorithm for high performance routers, given that it

strongly influences the mean time required for a lookup
process.

An array of parallel BTs accomplishes the LPM func-
tion for the entries of the forwarding table by storing
the entries belonging to the 16–32 bit range. Every BT
has been configured according to the Minimal Perfect
Hash Function (MPHF) [1], a scheme conceived to ob-
tain memory efficient storage and fast item retrieval.
Shorter entries, instead, are stored in a very simple Di-
rect Addressing (DA) logical block. DA module uses the
address itself (in this case only the 15 most significant
bits) as on offset to memory locations.

The implementation platform for this algorithm is the
NetFPGA [12] board, a new networking hardware which
proves to be a perfect tool for research and experimen-
tation. It is composed of a full programmable Field
Programmable Gate Array (FPGA) core, four Gigabit
Ethernet ports and four banks of Static and Dynamic
Random Access Memories (S/DRAM).

This work is focused on the data-path implementa-
tion of the BT-based algorithm for fast IP lookup. The
software control plane has been also modified in order
to accommodate the management and construction of
the novel data structure. The software modifications
merges perfectly in the preexistent SCONE (Software
Component of the NetFPGA).

The rest of the paper is organized as follows: after
the related work in address lookup area, section 3 il-
lustrates the main idea, the overall algorithm and the
data structures of our scheme. Then section 4 shows
the actual implementation of our algorithm on NetF-
PGA while section 5 presents the modifications in the
control plane software. Finally, section 6 shows the ex-
perimental results and section 7 ends the paper.

2. RELATED WORK
Due to its essential role in Internet routers, IP lookup

is a well investigated topic, which encompasses trie-
based schemes as well as T-CAM solutions and hashing

1

techniques. Many algorithms have been proposed in
this area ([4][6][9][10][14][15]); to the best of our knowl-
edge, the most efficient trie-based solutions in terms of
memory consumption and lookup speed are Lulea and
Tree Bitmap.

Lulea [4] is based on a data structure that can rep-
resent large forwarding tables in a very compact form,
which is small enough to fit entirely in the L1/L2 cache
of a PC Host or in a small memory of a network pro-
cessor. It requires the prefix trie to be complete, which
means that a node with a single child must be expanded
to have two children; the children added in this way are
always leaf nodes, and they inherit the next-hop infor-
mation of the closest ancestor with a specified next-hop,
or the undefined next hop if no such ancestor exists. In
the Lulea algorithm, the expanded unibit prefix trie de-
noting the IP forwarding table is split into three levels
in a 16-8-8 pattern. The Lulea algorithm needs only 4-5
bytes per entry for large forwarding tables and allows
for performing several millions full IP routing lookups
per second with standard general purpose processors.

Tree Bitmap [6] is amenable to both software and
hardware implementations. In this algorithm, all chil-
dren nodes of a given node are stored contiguously, thus
allowing for using just one pointer for all of them; there
are two bitmaps per node, one for all the internally
stored prefixes and one for the external pointers; the
nodes are kept as small as possible to reduce the re-
quired memory access size for a given stride (thus, each
node has fixed size and only contains an external pointer
bitmap, an internal next hop info bitmap, and a single
pointer to the block of children nodes); the next hops as-
sociated with the internal prefixes kept within each node
are stored in a separate array corresponding to such a
node. The advantages of Tree Bitmap over Lulea are
the single memory reference per node (Lulea requires
two accesses) and the guaranteed fast update time (an
update of the Lulea table may require the entire table
to be almost rewritten).

A hardware solution for the lookup problem is given
by CAMs, which minimize the number of memory ac-
cesses required to locate an entry. Given an input key,
a CAM device compares it against all memory words
in parallel; hence, a lookup actually requires one clock
cycle only. The widespread use of address aggregation
techniques like CIDR requires storing and searching en-
tries with arbitrary prefix lengths. For this reason, T-
CAMs have been developed. They could store an addi-
tional Don’t Care state thereby enabling them to retain
single clock cycle lookups for arbitrary prefix lengths.
This high degree of parallelism comes at the cost of
storage density, access time, and power consumption.
Moreover TCAMs are expensive and offer little adapt-
ability to new addressing and routing protocols [2].

Therefore, other solutions which use tree traversal

and SRAM-based approach are necessary. For example,
the authors of [11] propose a scalable, high-throughput
SRAM-based dual linear pipeline architecture for IP
Lookup on FPGAs, named DuPI. Using a single Virtex-
4, DuPI can support a routing table of up to 228K pre-
fixes. This architecture can also be easily partitioned,
so as to use external SRAM to handle even larger rout-
ing tables, maintains packet input order, and supports
in-place nonblocking route updates.

Other solutions take advantage of hashing techniques
for IP lookup. For instance, Dharmapurikar et al. [5]
use Bloom Filters (BFs) [3] for longest prefix match-
ing. Each BF represents the set of prefixes of a cer-
tain length, and the algorithm performs parallel queries
on such filters. The filters return a yes/no match re-
sult (with false positives), therefore the final lookup job
is completed by a priority encoder and a subsequent
search in off-chip hash tables. Instead, in our scheme,
we will use BF-like structures which have been properly
modified in order to directly provide an index for fast
search.

3. THE ALGORITHM
All the algorithms previously described remark the

most important metrics to be evaluated in a lookup
process: lookup speed, mean number of memory ac-
cess and update time. Each of the cited solutions tries
to maximize general performance, with the aim of be
implemented on a high performance router and obtain
line–rate speed. The main motivations for this work
come from the general limitations for high–performance
routing hardware: limited memory and speed. Specif-
ically, because of the limited amount of memory avail-
able, we adopt a probabilistic approach, thus reducing
the number of external memory accesses also.

Because of the large heterogeneity of real IP prefixes
distribution (as shown in several works as [5] and [13]),
our first idea is to divide the entire rule database into
two large groups, in order to optimize the structure:

• the prefixes of length ≤ 15, which are the minority
of IP prefixes , are simply stored in a Direct Ad-
dressing array; this solution is easily implemented
in hardware and requires an extremely low portion
of the FPGA logic area;

• the prefixes of length ≥ 16 are represented by
an array of Blooming Trees (hereafter called BT-
array).

In the lookup process, the destination address under
processing is hashed and the output is analyzed by the
BT-array and the DA module in parallel (see fig. 1).
Finally, an Output Controller compares the results of
both modules and provides the right output (i.e., the
longest matching), which is composed of a next-hop ad-

2

Figure 1: The overall IP lookup scheme.

dress (32 bits) and an output port number (3 bits, given
that the NetFPGA has 8 output ports).

In the BT-array the prefixes are divided into groups
based on their lengths and every group is organized in
an MPHF structure (as shown in fig. 2). Therefore,
the BT-array is an array where 17 parallel queries are
conducted at the same time; at the end of the process,
a bus of 17 wires carries the results: a wire is set to 1
if there is a match in the corresponding filter. Then a
priority encoder collects the results of the BT-array and
takes the longest matching prefix, while a SRAM query
module checks the correctness of the lookup (since BTs
are probabilistic filters in which false positives can hap-
pen).

Figure 2: BT-array schematic.

3.1 Blooming Tree for MPHF
The structure we adopt to realize a Minimal Per-

fect Hashing Functions is a Blooming Tree [8], which
is based on the same principles of Bloom Filters and
allows for a further memory reduction. The idea of BT
is constructing a binary tree upon each element of a
plain Bloom Filter, thus creating a multilayered struc-
ture where each layer represents a different depth-level
of tree nodes.

A Blooming Tree is composed of L+ 1 layers:

• a plain BF (B0) with k0 hash functions hj (j =

1 . . . k0) and m bins such that m = nk0/ ln 2 (in
order to minimize the false positive probability);

• L layers (B1 . . . BL), each composed of mi (i =
1 . . . L) blocks of 2b bits.

Just as a BF, k0 hash functions are used. Each of them
provides an output of log2m + L × b bits: the first
group of log2m bits addresses the BF at layer 0, while
the other L× b bits are used for the upper layers. The
lookup for an element σ consists of a check on k0 el-
ements in the BF (layer 0) and an exploration of the
corresponding k0 “branches” of the Blooming Tree.

“Zero-blocks” (i.e., blocks composed of a string of b
zeros which are impossible to be found in a naive BT
for construction) are used to stop the “branch” from
growing as soon as the absence of a collision is detected
in a layer, thus saving memory. This requires additional
bitmaps to be used in the construction process only. For
more details about BTs, refer to [8].

Our MPHF on BT is based on the statement that,
taken the BT as ordering algorithm (with k0=1), a
MPHF of an element x ∈ S (S is a set of elements)
is simply the position of x in the BT:

MPHF(x) = position
S,BT

(x) (1)

All we need to care when designing this structure is
that, in the construction phase, all the collisions vanish,
in order to achieve a perfect function.

Instead, as for the lookup, the procedure that finds
the position of an element x is divided into two steps:

• find the tree which x belongs to (we call it Tx) and
compute the number of elements at the Tx’s left;

• compute the leaves at the left of x in Tx.

In order to simplify the process, we propose the HSBF
[7] as the first level of the BT, instead of the standard
BF. The HSBF is composed of a series of bins encoded
by Huffman coding, so that a value j translates into
j ones and a trailing zero. Therefore, the first step of
the procedure is accomplished by a simple popcount in
the HSBF of all the bins at the left of x’s bin. As for
the second step, we have to explore (from left to right)
the tree Tx until we find x, thus obtaining its position
within the tree. The sum of these two components gives
the hash value to be assigned. For more details about
a MPHF realized by means of BT, refer to [1].

A simple example (see fig. 3) clarifies the procedure:
we want to compute the MPHF value of the element x.
In order to simplify the search in the HSBF, this filter is
divided into B sections of D bins, which are addressed
through a lookup table. Let us assume B = 2, D = 3,
and b = 1: hence, the hash output is 6-bits long.

Let us suppose h(x) = 101110. The first bit is used
to address the lookup table: it points to the second en-
try. We read the starting address of section D2 and

3

h(x) =

B0

B1

B2

B3

0 10 110 10 1110 0
Y1 Y2

0 0 1 0 0 0 1 1

1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

1 1 0 1

D1 D2

1 01 1 1 0

log2B
(bits)

log2D
(bits)

L × b
(bits)

Lookup Table


Start addr. Prev.elements Prev.“10”s

D1 0 0
D2 3 2

Figure 3: Example of hash retrieval through BT.

that 3 elements are in the previous sections (i.e., al-
ready assigned by the MPHF). Now we use the next
two bits of h(x) to address the proper bin in section
D2: “01” means the second bin. The popcount on the
previous bins in section D2 indicates that another ele-
ment is present (so far the total number of elements at
Tx’s left is 4).

Then we focus on Tx: to move up to the next layer, we
both use the third information in the table (the number
of ’10’s in previous sections, which is 2) and count the
number of “10”s in the previous bins of this section
(that is 1). The sum shows that, before our bin, 3 bins
are not equal to 0, so we move to the fourth block in
layer B1.

Here, the fourth bit of h(x) allows to select the bit
to be processed: the second one. But we want to know
all the Tx’s leaves at x’s left, hence we have to explore
all the branches belonging to the bin under processing.
So we start from the first bit of the block and count the
number of zero-blocks we find: 2, at layer B3. Now the
counter reads 6.

Regarding the second bit of the block (which is “the
bit of x”), a popcount in layer B1 indicates the third
block in layer B2: it is a zero-block, so we have found
the block representing our element only: x is the 7-th
element in our ordering scheme. Then MPHF(x) = 6.

4. IMPLEMENTATION

4.1 MPHF Module
As above mentioned, the main component of the al-

gorithm is the BT-array, which is composed of a se-
ries of MPHFs realized through BTs. Because of the
large difficulties in allocating a variable–sized structure
in hardware and for the sake of simplicity, in our imple-

mentation we simplify the scheme proposed in [1] and
adopt a fixed-size structure. In details, the implemented
structure presents 3 layers:

• Layer 0: a Counting Bloom Filter (CBF) com-
posed of 128 sections and with 16 bins for every
section;

• Layer 1: a simple bitmap that contains two bits
for every bin of the level 0;

• Layer 2: another bitmap with two bits for every
bit of the level 1; its size is then of 8192 bits.

These parameters (in terms of number of bins, sec-
tions and layers) are chosen in order to allocate, with a
very low false positives probability, up to 8192 prefixes
per prefix length, which implies that the total maxi-
mum number of entries is 128 thousands. Therefore,
this implementation can handle even recent prefix rules
databases and largely overcome the limitations of the
simple (linear-search-based) scheme provided with the
standard NetFPGA reference architecture.

Every bin of the CBF, according to the original idea
in [1] and as shown in [7], is Huffman–encoded. Again,
in order to simplify the hardware implementation, each
bin consists of 5 bits and its length is fixed. Thus a
maximum of 4 elements are allowed at level 0 for the
same bin (i.e.: a trailing zero and max 4 bits set to 1).
Since the probability of having bins with more than 4
elements is quite small (around 10−2) even if the struc-
ture is crowded, this implementation allows for a large
number of entries to be stored.

Moreover, a lookup table is used to perform the lookup
in the layer 0, which is composed of 128 rows containing
the SRAM initial address for each section of the CBF.
We place the entire BT and the lookup table in the fast
BRAM memory: the CBF at layer 0 occupies a block
of 2048 × 5 bits, while the lookup table has a BRAM
block of 128× 20 bits.

4.2 H3 Hash Function
The characteristics of the hash function to be used in

the MPHF are not critical to the performance of the al-
gorithm, therefore a function which ensures a fast hash
logic has been implemented: the H3 class of hardware
hash functions.

Define A as the key space (i.e. inputs) and B as the
address space (i.e. outputs):

• A = 0, 1, ..., 2i − 1

• B = 0, 1, ..., 2j − 1

where i is the number of bits in the key and j is the
number of bits in the address. The H3 class is defined
as follows: denote Q as the set of all the i × j boolean
matrices. For a given q ∈ Q and x ∈ A, let q(k) be the

4

k–th row of the matrix q and xk the k–th bit of x. The
hashing function hq(x) : A→ B is defined as:

hq(x) = x1 · q(1)⊕ x2 · q(2)⊕ . . .⊕ xi · q(i) (2)

where · denotes the binary AND operation and ⊕
denotes the binary exclusive OR operation. The class
H3 is the set {hq|q ∈ Q}.

Figure 4: The scheme of the hash function be-
longing to the H3 class. The Q matrix is stored
in a BRAM block.

Figure 4 shows our H3 design. The process is divided
into two steps: first the 32-bit input value (i.e. the
IP address) is processed by a block of AND, then the
resulting 32 vectors of n bits are XOR-ed by a matrix
of logical operations and a resulting string of n bits is
provided as output.

The length of the output is chosen to meet the re-
quirements of the following BT-array. The q matrix is
pre–programmed via software, passed through the PCI
bus, and stored in a BRAM block.

4.3 Managing false positives
As already stated, a BT provides also a certain amount

of false positives with probability f . Thus every lookup
match has to be confirmed with a final lookup into
SRAM. Then, intuitively, the average number of SRAM
accesses n increases as f grows. More formally, assum-
ing all BTs in the BT-array have the same false positive
probability f , we can write:

n ≤ 1 +
16∑

i=1

f i ≤ 1
1− f

(3)

This equation takes into account the probability of the
worst case that happens when all BTs provide false pos-
itives and are checked in sequence. As one can easily
verify, even if f is quite large, the average number of
memory accesses is always close to 1 (less than 1.11 for
f = 0.1).

5. CONTROL PLANE
The MPHF IP lookup algorithm needs a controller

that manages the building of the database, the setup of
the forwarding table, and the potential updates of the
prefixes structures. All these functions have been im-
plemented in C/C++ and integrated into the Software
SCONE.

Figure 5: In this figure the different functions of
the software control plane can be seen.

This software adopts PW-OSPF as routing protocol,
which is a greatly simplified link–state routing protocol
based on OSPFv2 (rfc 1247). Every time an update
in the routing table occurs, a new forwarding table is
created and passed entry by entry through the PCI bus
to the NetFPGA. An entry in the forwarding table is
composed of destination IP address, subnet mask, gate-
way, and output port. The original behavior in SCONE
was to retransmit all the entries of the forwarding ta-
ble for each update, while we transmit the modified
(new, updated or deleted) entries only. Then the de-
veloped Controller analyzes these entries and modifies
the proper structures. This communication takes ad-
vantage of the register bus.

5.1 Updates
When a modification in the forwarding table occurs,

it may happen that the new elements lead to collisions
in one of the MPHF structures (because they are lim-
ited to 2 layers only). In this case, the hash function
has to be modified in order to avoid these collisions.
This requires the change of the Q matrix and its re-

5

transmission to the H3 hashing module, which stores
the matrix in a BRAM block. The same communica-
tion protocol used for the construction is adopted, in-
deed a simple registers call has to be made. Therefore,
a new hash function is used and all the data-structures
for lookup are updated, thus obtaining MHPFs with no
collisions.

6. RESULTS
In this section, the simulative results about the im-

plementation of our algorithm are shown. In details, we
focus on resource utilization, in terms of slices, 4-input
LUTs, flip flops, and Block RAMs. We compare our re-
sults with those of the NetFPGA reference router where
a simple linear search is implemented for IP lookup.

Table 1 shows the device utilization (both as absolute
and relative figures) for the original NetFPGA lookup
algorithm. It provides a simple lookup table which al-
lows to manage 32 entries only to be looked for through
a linear search. Instead we implement a more efficient
and scalable algorithm, which is capable of handling up
to 130000 entries (by assuming a uniform distribution
for entries prefix length). This complexity is obviously
paid in terms of resource consumption (see tab. 2): in
particular, our lookup module uses 41% of the available
slices on the Xilinx Virtex II pro 50 FPGA and 29% of
the Block RAMs. However, as for the synthesis of the
project, it is worth noticing that even though we use a
wide number of resources, the timing closure is achieved
without any need to re-iterate the project flow.

Table 1: Resource utilization for the original
lookup algorithm.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 935 out of 23616 3%
4-input LUTS 1321 out of 47232 2%

Flip Flops 343 out of 47232 0%
Block RAMs 3 out of 232 1%

Table 2: Utilization for our algorithm.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 9803 out of 23616 41%
4-input LUTS 10642 out of 47232 22%

Flip Flops 19606 out of 47232 41%
Block RAMs 68 out of 232 29%

Tables 3 and 4 list the specific consumption of the
main modules composing our project. In particular, the

Table 3: Utilization for a single MPHF.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 398 out of 23616 1%
4-input LUTS 561 out of 47232 1%

Flip Flops 618 out of 47232 1%
Block RAMs 6 out of 232 2%

Table 4: Utilization for the hashing module.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 1179 out of 23616 4%
4-input LUTS 1293 out of 47232 2%

Flip Flops 1841 out of 47232 3%

final synthesis summary is reported for both a single
MPHF and the hashing module. It is interesting to
observe the number of slices required for the hashing
compared to that of the table 3: the hashing module
ends up to be bigger than the whole MPHF module
because of its complexity, since it has to provide 17
different hash values for each of the 17 MPHF blocks.

Finally, table 5 presents the overall device utilization
for the reference router including our lookup algorithm
and highlights the extensive use of the various resources.
In particular we use 94% of the available Block Rams
and 74% of slices and LUTs.

7. CONCLUSIONS
This paper presents a novel scheme to perform longest

prefix matching for IP lookup in backbone routers. By
following the real IP prefixes distributions, we divide
the entire rule database into two large groups, in order
to optimize our scheme. For prefixes of length < 16,
which are the minority of IP prefixes, we use a simple
Direct Addressing scheme, while for the others we use
an array of Blooming Trees.

The implementation platform for this work is the
NetFPGA board, a new networking tool which proves
to be very suitable for research and experimentation.

Table 5: Utilization for our overall project.

Resources XC2VP50 Utilization
Utilization Percentage

Slices 17626 out of 23616 74%
4-input LUTS 32252 out of 47232 74%

Flip Flops 31512 out of 47232 66%
Block RAMs 220 out of 232 94%

External IOBs 360 out of 692 52%

6

NetFPGA, originally, provides a simple lookup scheme
which allows to manage 32 entries only by means of lin-
ear searches. Instead, our scheme is capable of handling
up to 130000 entries at the cost of a bigger resource
consumption. Anyway, the timing closure is achieved
without any need to re-iterate the project flow.

8. ADDITIONAL AUTHORS

9. REFERENCES

[1] G. Antichi, D. Ficara, S. Giordano, G. Procissi,
and F. Vitucci. Blooming trees for minimal
perfect hashing. In Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008.
IEEE, pages 1–5, 30 2008-Dec. 4 2008.

[2] F. Baboescu, S. Rajgopal, L. B. Huang, and
N. Richardson. Hardware implementation of a
tree-based ip lookup algorithm for oc-768 and
beyond. In DesignCon, 2006.

[3] B. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the
ACM, 13(7):422–426, July 1970.

[4] M. Degermark, A. Brodnik, S. Carlsson, and
S. Pink. Small forwarding tables for fast routing
lookups. In Proc. of the ACM SIGCOMM ’97,
pages 3–14, New York, NY, USA, 1997. ACM.

[5] S. Dharmapurikar, P. Krishnamurthy, and
D. Taylor. Longest prefix matching using bloom
filters. In SIGCOMM 2003.

[6] W. Eatherton, Z. Dittia, and G. Varghese. Tree
bitmap: Hardware/software ip lookups with
incremental updates. In ACM SIGCOMM
Computer Communications Review, 2004.

[7] D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci. Multilayer compressed counting bloom
filters. In Proc. of IEEE INFOCOM ’08.

[8] D. Ficara, S. Giordano, G. Procissi, and
F. Vitucci. Blooming trees: Space-efficient
structures for data representation. In
Communications, 2008. ICC ’08. IEEE
International Conference on, pages 5828–5832,
May 2008.

[9] P. Gupta and N. Mckeown. Packet classification
using hierarchical intelligent cuttings. In in Hot
Interconnects VII, pages 34–41, 1999.

[10] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In Proc. of
SIGCOMM, pages 203–214, 1998.

[11] H. Le, W. Jiang, and V. K. Prasanna. Scalable
high-throughput sram-based architecture for
ip-lookup using fpga. In International Conference
on Field Programmable Logic and Applications,
2008.

[12] J. W. Lockwood, N. McKeown, G. Watson,
G. Gibb, P. Hartke, J. Naous, R. Raghuraman,
and J. Luo. Netfpga–an open platform for
gigabit-rate network switching and routing. In
MSE ’07: Proceedings of the 2007 IEEE
International Conference on Microelectronic
Systems Education, pages 160–161, Washington,
DC, USA, 2007. IEEE Computer Society.

[13] Route Views 6447, http://www.routeviews.org/.
[14] S. Singh, F. Baboescu, G. Varghese, and J. Wang.

Packet classification using multidimensional
cutting, 2003.

[15] V. Srinivasan, S. Suri, and G. Varghese. Packet
classification using tuple space search. In Proc. of
SIGCOMM, pages 135–146, 1999.

7

URL Extraction on the NetFPGA Reference Router
Michael Ciesla and Vijay Sivaraman

School of Electrical Engineering and Telecommunications
University of New South Wales, Sydney NSW 2052, Australia.

Emails: m.ciesla@student.unsw.edu.au, vijay@unsw.edu.au

Aruna Seneviratne
National ICT Australia (NICTA)

Sydney, Australia.
Email: aruna.seneviratne@nicta.com.au

Abstract— The reference router implementation on the NetF-
PGA platform has been augmented for real-time extraction of
URLs from packets. URL extraction can be useful for application-
layer forwarding, design of caching services, monitoring of
browsing patterns, and search term profiling. Our implemen-
tation modifies the gateware to filter packets containing a HTTP
GET request and sends a copy to the host. Host software is
implemented to extract URLs and search terms. The software
integrates with a database facility and a GUI for offline display
of web-access and search term profiles. We characterise the
link throughput and CPU load achieved by our implementation
on a real network trace, and highlight the benefits of the
NetFPGA platform in combining the superior performance of
hardware routers with the flexibility of software routers. We also
demonstrate that with relatively small changes to the reference
router, useful applications can be created on the NetFPGA
platform.

I. INTRODUCTION

The ability to view Uniform Resource Locators (URLs)
corresponding to traffic flowing through a network device
enables many diverse and interesting applications ranging
from application layer switching and caching to search term
visibility. Application-layer switching uses URLs to direct
HTTP protocol requests to specialised servers that store less
content, allowing for higher cache hit rates, and improved
server response rates [1]. The basis of most caching system
architectures is the interception of HTTP requests [2]. HTTP
requests identify the objects that the system must store and
are also used as index keys into storage databases. URLs also
contain user search engine terms (popular search engines such
as Google and Yahoo embed the search terms in the URLs).
Through appropriate means, ISPs can partner with marketing
companies to harvest search terms in order to generate new
revenue streams from targeted advertising [3].

To our knowledge, there currently is no deep packet in-
spection (DPI) functionality, specifically for URL extraction,
available on the NetFPGA platform. This project augments
the NetFPGA reference router to analyse HTTP packets and
extract URL and search term data. The NetFPGA user data
path parses packet headers and payloads to identify HTTP
GET packets and sends a copy to the host (in addition to
forwarding the packet along its normal path). Software on the
host displays the URLs and search terms on-screen in real-
time. It also logs the URLs and search terms to a database,
and a graphical user interface (GUI) has been developed to
graphically profile web-page accesses (e.g. top-20 web-sites

accessed) and search terms (e.g. to identify potential illegal
activity).

II. ARCHITECTURE

Our hardware accelerated URL extraction system consists of
two main components: hardware and software. The hardware
component is an extended NetFPGA IPv4 reference router
that filters packets containing a HTTP GET request method
in hardware and sends a copy to the host. The software
component is composed of three parts: URL Extractor (urlx),
database, and a graphical user interface. The URL Extractor
parses HTTP GET packets, extracts the contained URLs and
search terms, and then stores them into a database. The GUI
queries the database for top occurring URLs and search terms,
and displays them on-screen. Fig. 1 shows a system diagram.

Graphical User Interface

Database

URL Extractor

NetFPGA

HTTP Get Request Packets

URL & Search Terms

Top Occurring URLs & Search Terms

Fig. 1. System Diagram

A. IPv4 Reference Router Modification

Our design modifies the Output Port Lookup module of
the reference router. Fig. 2 shows the layout of the module
with the addition of the new http get filter submodule. The
output port lookup.v file has been altered to include the def-
inition of the http get filter and its wire connections to the
preprocess control and op lut process sm submodules.

The http get filter functions as a new preprocess block with
the responsibility of identifying packets containing URLs. The
HTTP protocol uses the GET request method to send URL
requests to a server. Packets containing a GET request are

op_lut_hdr_parser

ip_lpm

eth_parser

dest_ip_filter

ip_checksum

http_get_filter

ip_arp

op_lut_process_smpreprocess_control

fifo

reg_op_lut_regs

in_data

in_data

in_data

in_data

in_data

in_data

in_ctrl

in_data

in_ctrl

out_wr

out_data

out_ctrl

out_rd

in_data

in_ctrl

in_wr

in_data

in_ctrl

in_rdy

reg_X_in

reg_X_out

Preprocess Blocks

Fig. 2. Submodule layout of the modified Output Port Lookup. The http get filter is a new submodule and the op lut process sm has been altered.

Words 63:48 47:32 31:16 15:0

1 eth sa

2 type ver, ihl,tos

3 total length identification flags, foff ttl, proto

4 checksum dst ip

5 dst ip src port dst port sequence

6 sequence doff, flags

7 win size checksum urgent pointer options

8

Words 63:48 47:32 31:16 15:0

1 eth sa

2 type ver, ihl,tos

3 total length identification flags, foff ttl, proto

4 checksum dst ip

5 dst ip src port dst port sequence

6 sequence doff, flags

7 win size checksum urgent pointer options

8

9 HTTP "GET"

URL N-1

URL N

Packet Header

URL 1

URL 2

…

…

ack

options

options

User Data Path (in_data) Register Bits

eth da

eth sa

src ip

User Data Path (in_data) Register Bits

eth da

eth sa

src ip

ack

Fig. 3. NetFPGA word alignment for Unix GET packets. Fields shaded in
red are inspected for GET packet identification.

distinguished by containing the “GET” string at the beginning
of the TCP payload. In addition to checking for this string,
identifying GET packets involves inspecting four other header
fields (refer to Fig. 3). First, the packet length is checked to
ensure its large enough to contain the “GET” string. Second,
we check for the TCP protocol, which is used to transport
HTTP. Third, the destination port is inspected for HTTP
port numbers (our current implementation only checks for
port 80). Fourth, the TCP header length is checked since
it varies in size for GET packets originating from different
operating systems. For example, Linux TCP headers include
a 12-byte Option field that Windows does not. Consequently,
this changes the location of the “GET” string, and extra state
must be maintained to track whether the current packet being
processed is potentially a Windows or Unix GET packet.

The identification of GET packets is implemented by the
state machine shown in Fig. 4. By checking the above men-
tioned protocol header fields and for the occurrence of the
“GET” string at the beginning of the TCP payload, the state
machine carries out a seven stage elimination process of

WAIT_IP_PROTO_LEN

CHECK_DST_PORT

WORD_3

CHECK_TCP_LEN

WIN_GET

WORD_7

UNIX_GET

Fig. 4. Diagram of State Machine Used to Identify GET Packets

identifying a GET packet. The state machine initially idles
in the WAIT IP PROTO LEN state waiting for the IP packet
length and protocol fields of the IP header to be present on
the data bus. The preprocess control signals the http get filter
when this data is on the bus, and the elimination process is
started. If any of the checks fail, the state machine resets to
the WAIT IP PROTO LEN state, and waits for a new packet.
A FIFO is used to store the result of the GET packet check,
which is later used by op lut process sm.

The method used to check for the “GET” string varies
between Windows and Unix packets. For Unix packets (we’ve
tested Linux and Mac OS X operating systems), the string is
located in bits 8 to 31 of the 9th word. This is shown in Fig. 3.
Conversely, for Windows packets, there are no TCP Options
and the string spans multiple words on the NetFPGA data bus.
The letters “GE” are located in the first two bytes of the 7th
word and the remaining letter “T” is stored in the first byte of
the 8th word. To simplify the implementation, the WIN GET
state only checks for the “GE” letters and the UNIX GET state
checks for the whole “GET” string.

The WORD 3 and WORD 7 states do no processing and are
used to skip packet headers that are on the data bus.

The role of the op lut process sm submodule is to use data
gathered by the preprocess blocks to determine the correct
output port(s) a packet should take and then forward the packet
to the Output Queues module. Fig. 5 shows a state diagram of
the submodule. The initial state is WAIT PREPROCESS RDY,
which waits until all the preprocess blocks, i.e. eth parser,
ip lpm, http get filter, etc. have completed their processing
roles for the current packet on the data bus. The next state
for error free packets is MOVE MODULE HDRS. This state
controls which output port(s) a packet will be sent out on by
modifying the one-hot encoded output port field in the IOQ
packet header.

WAIT_PREPROCESS_RDY

MOVE_MODULE_HDRS

SEND_SRC_MAC_LO

SEND_IP_TTL

SEND_IP_CHECKSUM

MOVE_PKT

DROP_PKT

Fig. 5. State diagram of the op lut process sm submodule. Code in the
WAIT PREPROCESS RDY state has been altered.

Code changes have been made in the
WAIT PREPROCESS RDY state to update the IOQ header
output port field so that GET packets are duplicated up to the
host system through one of the CPU transmit queues.

The rest of the states take care of updating the correct
Ethernet MAC addresses, time-to-live field, and IP checksum
as packets get passed to the Output Queues module. No other
changes have been made in these states.

The extended reference router is configured using the soft-
ware tools provided in the NetFPGA base package, i.e. the cli,
Java GUI, or SCONE.

B. Software
The URL Extractor is written in C, and reads packets from

the first NetFPGA software interface, i.e. nf2c0, using raw
sockets. Raw sockets have been used because they allow
packets to bypass the Linux TCP/IP stack and be handed
directly to the application in the same form they were sent
from the NetFPGA hardware.

Uniform Resource Locators consists of two parts: Host,
and Uniform Resource Identifier (URI). Both these fields are
contained within a GET packet, as shown in Fig. 6. The URL
Extractor parses GET packets for these fields, and then extracts
and concatenates the data before storing it in the database. The
URLs are also checked to contain Google search terms, and
if found, are also entered into the database. Extracted URLs
and search terms are printed on-screen in real-time.

Fig. 6. Image of a HTTP GET Request Packet

As previously stated, the location of the “GET” string in
HTTP packets varies with the client operating system. In
addition to this, the format of GET packets is heterogeneous
across different browsing software, with variations in the offset
between the URI and Host fields. This is due to the fact
that the HTTP/1.1 RFC only states that certain fields must
be included in a GET request but not their specific location
[4]. The URL Extractor has been designed to handle both these
variations. Furthermore, GET requests can be large and span
across multiple TCP segments. Currently the software only
deals with GET requests confined to a single packet.

A MySQL database [5] is used to store the extracted URLs
and search terms. The database is composed of two tables:
one for URLs and the other for search terms.

The GUI queries the database for the top-20 occurring URLs
and search terms. It has also been written in C using the GTK+
API [6].

III. EXPERIMENTATION

We first verified our implementation in the simulation plat-
form by using the Perl testing library. The library allowed us
to create packets with specific TCP payloads. This was accom-
plished by first capturing GET packets using Wireshark and
then exporting the TCP header and payload using the “Export
as C Arrays” feature. These packet bytes were then imported
into our simulation scripts. Once verified in simulation, we

created regression tests that mirrored our simulation tests. The
regression tests were also created using the Perl testing library
and allowed us to verify the operation of our design in real
hardware. Furthermore, the regression tests of the reference
router were also used to ensure that our modifications did not
break the standard functionality of the reference router. The
availability of these tests greatly reduced the time required to
test our design.

Having verified the correctness of our implementation, we
ran three experiments to profile the system resource utilization
of our URL extraction system with and without the NetF-
PGA platform. The first two experiments both utilised the
NetFPGA but used different hardware designs; one filtered
HTTP GET packets while the other filtered all packets with
a TCP destination port equal to 80 (HTTP). We refer to
these designs as the GET and SPAN filters respectively, from
here on. The third experiment used a software router (a PC
configured as a router). Our experiments were based on a host
computer system running the CentOS 5.2 operating system and
contained an AMD dual core processor running at 3.0 GHz,
2 GB RAM, an Intel Pro/1000 Dual-port NIC, and an ASUS
M2N-VM DVI motherboard with an on-board gigabit NIC.
Ideally we would have liked to deploy our implementation
in a live network, but this raised practical concerns from the
system administrators at our University. We therefore had to
take the next best option, by which the network administrators
collected a trace of the entire department’s traffic to/from the
Internet over a 24-hour period, and gave us the trace, after
some sanitization (to remove clear-text passwords etc.), as a
set of PCAP files. We then used tcpreplay software [7] to play
the PCAP files at the maximum rate, using the --topspeed flag
(the size of the PCAP files were too large for use on the
NetFPGA packet generator [8]). Two PCs were used to pump
traffic into the URL extraction system in order to increase
the throughput to gigabit speeds. The total input rate by both
PCs was approximately 1.3 Gb/s into the NetFPGA platform
and 800 Mbps into the software router (both inputs into the
software router were connected to the Intel NIC). The network
trace contained 13 GB of traffic and was replayed in three
continuous iterations in each experiment. These input rates
and traffic volume presented a reasonable “stress-test” under
which the performance of the system was profiled.

Performance profiling was conducted with a lighter version
of the URL extraction software that did not include the
database and GUI. URLs and search terms were extracted to
a text file instead. This produced results that focused more
on the hardware component of the system as the higher level
software had not yet been optimised for performance.

Whilst conducting the experiments we monitored 4 system
variables: throughput into the router (measured at the output of
the senders), throughput on the interface that the urlx software
was binded to, the host CPU utilization, and the throughput
on the input interface of the adjacent router (as a measure of
the router’s forwarding rate).

Figs. 7 and 8 show the input and output rates of the routers.
The rates for both NetFPGA designs (SPAN and GET filters)

are identical as the filtering level does not affect the data plane
forwarding rate of the reference router. Their output rate is
slightly below 1 Gb/s because the output measurements were
taken on a PC that could not keep up with the line rate. As
the NetFPGA is capable of forwarding at the line rate [9],
the output rate would be 1 Gb/s had the measurements been
taken directly from the NetFPGA output port. Hence, it is
fair to assume that our design can perform URL extraction
at the gigabit line rate. Due to the dumbbell experimentation
topology, the output of the NetFPGA is a bottle neck point,
and the difference between the input and output graphs (Fig. 7)
represents dropped packets at the output queue.

The input rate into the software router (Fig. 8) is substan-
tially lower than that of the NetFGPA platform, even though
the tcpreplay settings were identical (using the –topspeed
flag). This is due to the flow control mechanism in Gigabit
Ethernet [10] kicking in and reducing the rate as the software
router’s buffers become full. The slower input rate led to an
increased transmission time. The software router also drops
packets. This is most likely caused by the processor not being
able keep up since it is at near maximum utilization, as shown
in Fig. 10. The average forwarding rate for the software router
was 450 Mbps. Overall, the NetFPGA forwarding rate for this
topology is more than 2 times faster than that of the software
router.

Fig. 9 shows the throughput on the urlx receiving interface.
The GET and SPAN hardware filters transmit an average of 4K
and 48K packets per second up to the host respectively. The
GET filter transmits 12 times less traffic up to the host than the
SPAN filter. This result is in-line with the protocol hierarchy
analysis performed on the network trace that showed 1.62% of
packets contain a GET request and 19.20% were destined for
port 80. The resulting ration of these two numbers is 11.85.

In both the SPAN and GET filter implementations, du-
plicated packets are sent up to the host through the nf2c0
interface. During experimentation, we ensured that nothing
was connected on the MAC-0 port of the NetFPGA. This
prevented packets not part of the filtering process from being
sent up to the nf2c0 interface since the reference router sends
exception packets up to the host to be handled by software. It
allowed accurate collection of data from the interface.

As the software router has no filtering capability, the urlx
software is required to inspect every packet that enters the
router, and hence the high throughput level in Fig. 9.

Fig. 10 shows the CPU utilization of the host system. The
NetFPGA GET filter reduces the utilization by a factor of
36 over the software router and a factor of 5.5 over the
SPAN router. The reductions are to due to fewer packets being
processed since filtering takes places in hardware. In addition,
the NetFPGA performs forwarding in hardware. This is in
contrast to the software router which has to process every
single packet.

The three distinct repetitions of the SPAN and GET curves
in Fig. 10 represent tcpreplay being looped through three
iterations. The 4th smaller repetition is most likely caused by
one of the two senders being out of sync and finishing later.

Fig. 7. Input and Output Throughputs for NetFPGA Routers

Fig. 8. Input and Output Throughput for Software Router

Fig. 9. Throughput on urlx Receiving Interface(s)

Fig. 10. Total CPU Utilization for Dual Core Processor

Our network trace spanned 13 PCAP files, each 1 GB in size.
The system performance data was gathered using col-

lectd [11] and the graphs were created using drraw [12].

IV. DEVICE UTILIZATION

The device utilization of the hardware component of our
URL extraction system (the GET filter) is almost identical to
that of the reference router design and is displayed in table I.

TABLE I
DEVICE UTILIZATION FOR THE GET FILTER

XC2VP50 Utilization
Resources Utilization Percentage

Slices 9731 out of 23616 41%
4-input LUTS 14394 out of 47232 30%

Flip Flops 8238 out of 47232 17%
Block RAMs 27 out of 232 11%
External IOBs 360 out of 692 52%

V. CONCLUSION

Our hardware accelerated URL extraction system is im-
plemented on the NetFPGA platform. It performs filtering
of HTTP GET packets in hardware and extraction, storage,
and display of URLs and search terms in software. We
believe this mix of hardware (high performance) and software
(high flexibility) makes the NetFPGA platform very suitable
for URL extraction: the filtering of HTTP GET packets in
hardware reduces the load on the host system’s processor,
whilst still maintaining packet forwarding at gigabit line-rate
speeds. We have shown that full URL extraction in a software-
based router consumes substantially more CPU cycles when
compared to the NetFPGA platform. On the other hand, a
fully hardware-based implementation of URL extraction, say
in a commercial router, would involve long development time;
simple solutions such as configuring port mirroring (e.g. SPAN
port on a Cisco router [13]) do not provide hardware filtering
of traffic and therefore still require a host system to filter the
traffic in software.

The implementation process of the GET filter was simplified
by the pipelined architecture of the reference router. Only
the operating details of the Output Port Lookup stage were
required in order to achieve our goal of filtering GET packets
in hardware. Furthermore, by reusing the reference router
design, the development time of the GET filter was greatly
reduced as we did not have to start from scratch.

Our code has been released, following the guidelines in [14],
to the larger community for re-use, feedback, and enhance-
ment. It can be downloaded from [15].

REFERENCES

[1] G. Memik, W. H. Mangione-Smith, and W. Hu.Netbench, “A bench-
marking suite for networkprocessors,” in International Conference on
Computer Aided Design (ICCAD), San Jose, CA, 2001.

[2] G. Barish and K. Andobraczka, “World wide web caching: Trends and
techniques,” IEEE Communications, vol. 38, no. 5, pp. 178–184, 2000.

[3] P. Whoriskey, “Every click you make: Internet providers
quietly test expanded tracking of web use to target
advertising,” 2008, http://www.washingtonpost.com/wp-
dyn/content/article/2008/04/03/AR2008040304052.html.

[4] R. Fielding et al., “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1,”
1999, http://www.ietf.org/rfc/rfc2616.txt.

[5] MySQL, “MySQ website,” http://www.mysql.com/.
[6] Gtk, “The Gtk+ Project,” http://www.gtk.org/.
[7] tcpreplay developers, “tcpreplay website,”

http://tcpreplay.synfin.net/trac/wiki/tcpreplay.
[8] G. A. Covington, G. Gibb, J. Lockwood, and N. McKeown, “A Packet

Generator on the NetFPGA Platform,” in IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Apr 2009.

[9] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,
“Netfpga: An open platform for teaching how to build gigabit-rate
network switches and routers,” in IEEE Transactions on Education,
August 2008.

[10] IEEE Standard for Information technology–Telecommunications and
information exchange between systems–LAN/MAN–Part 3: CSMA/CD
Access Method and Physical Layer Specifications - Section Two, IEEE
Std. 802.3, 2008.

[11] F. Forster, “collectd website,” http://collectd.org/.
[12] C. Kalt, “drraw website,” http://web.taranis.org/drraw/.
[13] Cisco Systems, “Cisco SPAN Configuration,”

http://www.cisco.com/en/US/products/hw/switches/ps708/products tech
note09186a008015c612.shtml#topic5.

[14] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N. McKeown,
“Methodology to contribute netfpga modules,” in International Confer-
ence on Microelectronic Systems Education (submitted to), 2009.

[15] M. Ciesla, V. Sivaraman, and A. Seneviratne, “URL Extraction Project
Wiki Page,” http://netfpga.org/netfpgawiki/index.php/Projects:URL.

A DFA-Based Regular Expression Matching Engine on A
NetFPGA Platform

Yan Luo Sanping Li Yu Liu
Department of Electrical and Computer Engineering

University of Massachusetts Lowell
yan luo@uml.edu,{sanping li,yu liu}@student.uml.edu

ABSTRACT
Regular expression matching plays an important role in deep
packet inspection that searches for signatures of virus or
attacks in network traffic. The complexity of regular ex-
pression patterns and increasing line rate challenge the high
speed matching. In this paper, we present a high speed regu-
lar expression matching engine implemented on a NetFPGA
platform. We describe our design considerations, the archi-
tecture and a number of verification test cases.

1. INTRODUCTION
Regular expression is powerful in expressing groups of

complex patterns. Such patterns are often used in Deep
Packet Inspection (DPI) that searches network packet pay-
loads to detect threats, such as intrusions, worms, viruses
and spam. The increasing number and complexity of pat-
terns (aka rules) in rule sets (e.g. Snort[11]), coupled with
constantly increasing network line rates, make DPI at line
rate a challenging task.

Most of the pattern matching methods rely on state ma-
chines or finite automata, including Non-deterministic Fi-
nite Automata (NFA) or Deterministic Finite Automata
(DFA), to search for patterns. In addition, DFA is usu-
ally chosen over NFA for its deterministic performance. The
pattern matching based on DFA is essentially a memory in-
tensive task. However, the size of the DFAs can be too large
(often at least tens of megabytes) to be stored in on-chip
memory modules. As a result, the searching on the au-
tomata incurs a large number of off-chip memory accesses
that lead to unsatisfactory performance. Therefore, it is im-
portant to minimize the storage requirements of state ma-
chines and put as many states as possible into on-chip or
other fast memory modules to achieve high-speed pattern
matching.

In this paper, we present a DFA based regular expres-
sion matching engine that takes advantage of the architec-
tural features of FPGAs to perform fast pattern matching.
Specifically, we store the DFA states along with their tran-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

sitions in a compact fashion by eliminating redundant in-
formation. We organize the DFA states in parallel on-chip
memory banks to ensure the state lookup and transition to
be completed in a constant time. We pipeline the design to
further improve the system throughput.

The paper is organized as follows: Section 2 reviews re-
lated work briefly. Section 3 elaborates our design of a reg-
ular expression matching engine on a NetFPGA platform,
and the verification results are presented in Section 4. Fi-
nally, the paper is concluded in Section 5.

2. RELATED WORK
Variable pattern length and location, and increasingly

large rule sets make pattern matching a difficult task. Many
string matching algorithms exist, such as those due to Boyer-
Moore [3], Wu-Manber [13], and Aho-Corasick [2], and there
have been numerous studies on regular expression matching
[4, 14, 8, 1]. Different platforms have been used to perform
DPI, including ASICs [12], FPGAs [5] and network proces-
sors [10]. Recently there are works such as [9, 6] that apply
NFA-based pattern matching methods on FPGAs.

3. THE DESIGN

3.1 Design Considerations
The design goal of the Regular Expression (RegEx) pat-

tern engine is to achieve line rate pattern matching speed
with a single modern FPGA chip. To achieve the goal, we
face several challenges:

• The intractable size of DFA generated from Perl Com-
patible Regular Expressions (PCRE) and the expand-
ing PCRE pattern set. Due to the complexity of PCRE
syntax, the number of DFA states generated from a
PCRE can be exponential. The Snort rule set as of
Sept 11, 2007 consists of 1783 unique PCREs and the
set keeps expanding. As a result, the memory required
to store the DFA states are often beyond the capacity
of available memory devices.

• Single-cycle DFA transition determination. This is one
of the key factors to achieve high pattern matching
rate. The comparison of current input byte with the
current DFA state is made complex by the require-
ment of supporting advanced features of PCREs such
as back references.

• Off-chip memory bandwidth constraints. The target
development board (and other single board designs)

places limitations on the support off-chip memory chan-
nels. The board supports up to two SRAM channels.
This could be a bottleneck of supporting more than
two matching engines when portions of the DFA have
to be stored in off-chip SRAM.

• On-chip memory size constraint. The size of on-chip
memory gives an upper bound of the DFA states stored
on-chip.

• On-chip logic resource constraint. The number of LUTs
(logic elements) dictates the number of matching en-
gines that can be instantiated. The number of match-
ing engines directly scales the throughput.

We have proposed in [7] a method to achieve single-cycle
state lookup/transition time while storing some DFA states
in a compact fashion. In a baseline design, the state tran-
sition is done by using the input character as a direct in-
dex to the lookup table to determine the next state. This
means every DFA state has to have a 256-entry lookup table
(Fig. 1(a)), which easily uses up the on-chip memory space.
In our proposal, a DFA state is stored in either on-chip mem-
ory or off-chip memory (SRAM), depending on the number
of transitions it has (we count only the valid transitions that
do not go back to the starting state of the DFA.) If the num-
ber of valid transitions is less than the number of on-chip
memory banks, we store the state transitions along with the
transition value in those banks, as illustrated in Fig. 1(b).
Since these on-chip memory banks can be accessed in paral-
lel, we are able to compare the input character with all the
transition values in one cycle to determine the next state.
If the number of valid transitions is more than the number
of on-chip banks accessed in parallel, we store a 256-entry
lookup table in SRAM and the transition lookup uses the
input character as the index.

Figure 1: DFA states stored in on-chip memory.

3.2 The Overview
We have designed a regular expression compiler to gen-

erate DFAs from PCREs. We use the rules from the Snort
rule set as our test rules. Snort rules defines both the 5-tuple
headers to match incoming packets and the PCRE patterns
to search for when a packet matches the 5-tuple header.
In our study, we focus on the PCRE matching and assume

that a header matching unit is available to determine which
PCRE patterns the packet should be matched against.

The workflow of the regular expression matching is illus-
trated in Fig. 2. We first use a regular expression compiler
to convert Snort rules (the PCRE portion) to DFAs. We
divide the PCREs (1784 unique PCREs in Snort 2007 rule
set) into groups of N-PCREs where N can be 1 through a
reasonable number k depending on the header classification.
Such group is feasible as the number of PCREs to match is
limited after header matching. The generated DFAs are an-
alyzed to determine whether a DFA state should be stored
in on-chip memory banks or off-chip ones. The memory
images are generated subsequently to initialize the memory
components in the system.

Figure 2: Workflow of Regular Expression Match-
ing.

We apply the techniques proposed in [7] in the design of
regular expression matching engine. The information of a
DFA state and its transitions are encoded and stored in M

on-chip memory banks, if the number of transitions is less
than a threshold (six in our design). The on-chip mem-
ory banks are read in parallel and the input byte from the
packet is compared against the encoded DFA state to deter-
mine the next state. The DFA states with larger number of
transitions than the threshold are placed in off-chip memory
units and the lookup of the next state is simply indexing the
memory with the input byte.

The packet content inspection engine is depicted in Fig. 3.
The design contains regular expression matching engines
(MEs) and a DFA update controller. Each ME is connected
to a Triple Speed Ethernet (TSE) IP core that receives and
sends packets. There is a packet scheduler in a ME that in-
terleaves incoming packets for the pipeline in ME. A ME also
contains on-chip memory banks that store encoded DFAs
and matching logic that looks up next states to perform
state transition. The DFA image update controller initial-
izes or updates the memory components with DFA images
received from a dedicated Ethernet interface. In our design,
we choose to use one Ethernet port to receive DFA images,
instead of updating over PCI bus, due to two reasons: (1)
fast prototyping using Ethernet interface to receive DFA im-
ages. We are more familiar with TSE than PCI bus trans-
actions; and (2) to allow DFA being updated remotely by
a control PC. Therefore, on the NetFPGA platform we in-
stantiate three RegEx MEs and one DFA update controller.
It is worthy noting that our design is not based on the NetF-
PGA reference designs which has well-established FIFO and
packet processing pipelines Instead, we build our design di-

rectly on Xilinx IP cores (ISE, onchip memory, etc.) which
we are familiar at the time when we start this work. It will
be our future work to integrate our design with NetFPGA
reference design framework.

Figure 3: Deep Packet Inspection Engine on NetF-
PGA

The DPI engine works as follows. The TSE core receives
Ethernet frames and keeps them in the FIFO unit. The
FIFO unit supplies packet content (including both header
and payload) to the scheduler by providing byte streams
and frame start and stop signals. The packet scheduler puts
the incoming packets to three internal packet buffers and
records the size of each frame. The scheduler then sends
the bytes from the three buffered frames to the pipelined
matching engine in a round-robin fashion. Thus, the MEs
see interleaved bytes from the three packets. The reason of
such a design with a scheduler and interleaved packets is that
a ME is implemented as a three-stage pipeline to improve the
throughput of the system. The MEs compare the input byte
with the transitions of the current DFA state to determine
the next state. They then perform the state transition by
updating the current state register until a matching state is
reached. In the next subsections, we describe our design in
more details.

3.3 The RegEx Matching Engine���� ��� �� �	
 � �
�� �� �� ����� ��� ���	������ �	�
�	
� � ��� � � �� ��
� � ������	����� � ��
� ��	��� ����
 �� �	� �
��

���� ��� �� �	
�� �� ��� �� �	

Figure 4: High Level Description of Matching En-
gine

The design of matching engine is made up of 3 modules,
the Matching Logic, Bank Addresses Generator and On-
chip Memory. The block diagram of architecture is shown
in Figure 4.

The Matching Logic module is the core module in the
design. Its input signals consist of the input characters,
DFA image data read from on-chip memory bank and addi-
tional control signals. The module consumes input charac-
ter streams; and also gets the 8 banks of memory data and
processes them in parallel to generate next memory address
for on-chip memory. Then the specified matching transition
data is selected according to the current input character. If
the current input character makes the state transition hap-
pen, the module continues to process the next input charac-
ter with the new transition data from the on-chip memory.
Repeat this process and finally the matching logic produces
the signal ”match” to tell the upper level module that cur-
rent input character stream matches the current PCRE rule
stored in the on-chip memory.

The Bank Address Generator module is used to calcu-
late the next address for on-chip memory banks and off-
chip memory. In the module On-chip Memory, 8 single-port
RAMs are instantiated.

The delays introduced by combinational logics in the mod-
ules limit the maximum frequency of the whole matching en-
gine design. In order to improve the frequency performance,
the design of three stages pipeline is introduced. The basic
idea is to make use of two levels registers to store temporary
combinational signals during the signal flow. The on-board
testing shows that the frequency performance has been im-
proved significantly. The pipeline design, however, involves
that the 3-character data streams which have to be inter-
leaved to feed into matching engine.

3.4 DFA Image Update
It is known that the DFAs generated from regular expres-

sion rules can be prohibitively large and the number of rules
in a set keeps increasing. The DFA states generated from
all the rules cannot be accommodated in on-chip memory at
once, even though some of states can be stored as on-chip
states. It is necessary to dynamically load DFA states so
that at any time the on-chip memory stores only the states
that are necessary in matching the current packet payload.
Therefore, we design a DFA update module to initialize and
dynamically write DFA states into the on-chip memory.�� !"#!$%&' ()*+,-./01/2/+3 456 783/9:;<=>?=@ ABC ?DE@< FGHIJKLL MNO<PQ RSTS USVWSXYZX[\V\Y]\ ^ _U`ST\YZTa aZbVcYU d\daef

g<hi<PO jkl im>EO< FGH MNO<PQ
n,+opq2r3p,+ s t/r08 3, q/)/pu/ +/v3 oqr2/456 78 3/9:

Figure 5: DFA Image Update Protocol

The module of DFA update implements the function of
writing the DFA image data into FPGA on-chip memory.
The updating process executed by the FPGA device in-
cludes the following steps, as shown in the Figure.5, (1)

Figure 6: Verification of test case “\x2FAD\x2FU?CMD/smi”

Figure 7: Verification of test case “ˆ[0-2]{1,3}\x00”

receive the request from the host for updating DFA image
data into FPGA on-chip memory; (2) send the acknowledge-
ment packet to the host and be ready to receive; (3) receive
packets comprising the DFA image data; (4) at the same
time, write DFA image data into the on-chip memory; (5)
send the acknowledgement for successfully receiving. If the
packets sending to the FPGA are of mal-format or invalid
during the updating process, the FPGA sends the specified
acknowledgement to notify the host to re-send the corre-
sponding packets.

While receiving packets containing DFA image data from
the host byte by byte, the update module groups each 4-
byte into one word which will be written into the on-chip
memory bank; meanwhile the memory address is also gen-
erated, including the bank number and the row address in
the bank. So when receiving the entire image data for one
memory bank, the update module completes the operation
of writing DFA data into the memory bank.

4. VERIFICATION WITH CASE STUDIES
The functional correctness of the matching engines is ver-

ified using ModelSim. We build test cases that exercise indi-
vidual features. The testing results show that the matching
engine supports all PCRE features, including anchor mark,
dollar mark, multiple lines mode, word boundary, back ref-
erence and look ahead.

We use the NetFPGA development board to perform on-
board testing. The on-board testing is the most compre-
hensive and strict testing method that ensures all the mod-
ules functional correctly and no timing violations. The test
cases cover mixed memory matching engine, accessing both
on-chip and SRAM memory units. We also tested DFA up-
date module by sending on-chip memory image from the PC
to the port 3 on NetFPGA board. The DFA update mod-
ule on the FPGA receives the memory images and subse-
quently writes image data to eight on-chip memory banks.
The SRAM writing module is done via a separate SRAM
writing state machine in the design. The experiment was
performed by sending raw Ethernet packets from a PC to
the port 0, 1, 2 of the four Ethernet ports on NetFPGA
board at 1Gbps rate. When there is a match, a special
packet will be sent out by the NetFPGA. The testing re-
sults show that our mixed memory matching engine passed
the test cases correctly.

Table 1: Test Case 1
PCRE rule \x2FAD\x2FU?CMD/smi

Input stream Testing Result
AD/AD/CMD Match
/AD/UCMD Match
/AD/UUCMD No Match

Table 2: Test Case 2
PCRE rule ˆ[0-2]{1,3}\x00

Input stream Testing Result
00ˆ@ Match
111ˆ@ Match
22ˆ@ Match
ˆ@00ˆ@ No Match

In the following we present the verification of the RegEx
ME using several example PCRE rules. For example, we
select two PCRE rules, “\x2FAD\x2F U?CMD/smi” and
“ˆ[0-2]{1,3}\x00”, as the testing cases. The corresponding
input character streams and testing results are shown in Ta-
ble 1 and Table 2. In Table 2, the symbol “ˆ@” in the input
character stream represents the character of 0x00. Fig. 6
and Fig. 7 are the corresponding testing waveforms gener-
ated by ModelSim XE.

In both figures of waveform, the input signal of “first-
Byte” asserts for one cycle when the first byte of each packet
arrives; the input signal of “lastByte” asserts for one cycle
when the last byte of each packet arrives; the signal “match-
Start” is an active-high enable signal for the matching logic
module; the input signal of “rx” is the characters sequence
arranged in the interleaved order of three incoming packets.
The output signal “match” asserts when the input charac-
ter stream match the current PCRE rule. All signals are
synchronized at the rising edge of the system clock.

5. CONCLUSION
We present in this paper a DFA based regular expres-

sion matching engine implemented on a NetFPGA platform.
We have implemented in the design a packet scheduler, and
pipelined matching engines and DFA image update module.
We also show two test cases used to verify our design. Cur-
rently, our implementation is not based on the framework

provided by NetFPGA reference designs which have well es-
tablished packet processing pipeline and interface with the
software on the host computer. In the near future, we plan
to port our design into the NetFPGA framework so that it
can be available for a wide range of interested users.

Acknowledgment
The authors thank Justin Latham, Chris Hayes and Ke Xi-
ang for their earlier work on this topic. The authors also
thank Jian Chen and Hao Wang for their valuable com-
ments. This project is supported in part by NSF Grant No.
CNS 0709001 and a grant from Huawei Technologies.

6. REFERENCES
[1] TRE: POSIX Compliant Regular Expression

Matching Library. http://laurikari.net/tre/.

[2] A. V. Aho and M. J. Corasick. Efficient string
matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340, 1975.

[3] R. S. Boyer and J. S. Moore. A fast string searching
algorithm. Communications of the ACM,
20(10):762–772, 1977.

[4] B.C. Brodie, R.K. Cytron, and D.E. Taylor. A
Scalable Architecture for High-Throughput
Regular-Expression Pattern Matching. In ISCA,
Boston, MA, June 2006.

[5] S. Dharmapurikar and J. Lockwood. Fast and scalable
pattern matching for network intrusion detection
systems. IEEE Journal on Selected Areas in

Communications, 24(10):1781–1792, October 2006.

[6] M. Faezipour and M. Nourani. Constraint Repetition
Inspection for Regular Expression on FPGA. In IEEE

Symposium on High Performance Interconnects, Palo
Alto, CA, August 2008.

[7] C. Hayes and Y. Luo. Dpico: A high speed deep
packet inspection engine using compact finite
automata. In ACM Symposium on Architecture for

Network and Communication Systems, Orlando, FL,
December 2007.

[8] S. Kumar, S. Dharmapurikar, P. Crowley, J. Turner,
and F. Yu. Algorithms to accelerate multiple regular
expression matching for deep packet inspection. In
SIGCOMM, Pisa, Italy, September 2006.

[9] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan.
Compiling pcre to fpga for accelerating snort ids. In
ACM Symposium on Architecture for Network and

Communication Systems, Orlando, FL, December
2007.

[10] P. Piyachon and Y. Luo. Efficient memory utilization
on network processors for deep packet inspection. In
ACM Symposium on Architecture for Network and

Communication Systems, San Jose, CA, December
2006.

[11] Snort. http://www.snort.org/, 2003.

[12] L. Tan and T. Sherwood. Architectures for Bit-Split
String Scanning in Intrusion Detection. IEEE Micro:

Micro’s Top Picks from Computer Architecture

Conferences, January-February 2006.

[13] S. Wu and U. Manber. Fast text searching: Allowing
errors. Communications of the ACM, 35(10):83–91,
1992.

[14] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. Fast and memory-efficient regular expression
matching for deep packet inspection. In ACM

Symposium on Architecture for Network and

Communication Systems, San Jose, CA, December
2006.

High-level programming of the FPGA on NetFPGA

Michael Attig and Gordon Brebner
Xilinx Labs

2100 Logic Drive
San Jose, CA 95124

{mike.attig,gordon.brebner}@xilinx.com

ABSTRACT
The NetFPGA platform enables users to build working pro-
totypes of high-speed, hardware-acceleratednetworking sys-
tems. However, one roadblock is that a typical networking
specialist with a software-side background will find the pro-
gramming of the FPGA to be a challenge because of the
need for hardware design and description skills. This pa-
per introduces G, which is a high-level packet-centric lan-
guage for describing packet processing specifications in an
implementation-independent manner. This language can be
compiled to give high-speed FPGA-based components. An
extension has been produced that allows these components
to be dropped easily into the data path of the standard NetF-
PGA framework. This allows a user to write and debug
packet processing functions at a high-level in G, and then
use these on the NetFPGA alongside other components de-
signed in the traditional way.

1. INTRODUCTION
Diversity and flexibility are increasingly important

characteristics of the Internet, both to encourage inno-
vation in services provided and to harness innovation
in physical infrastructure. This means that it is nec-
essary to provide multiple packet processing solutions
in different contexts. At the application level, there is
a need to implement deep packet inspection for secu-
rity or packetization of video data, for example. At the
transmission level, there is a need to keep pace with
rapidly-evolving technologies such as MPLS and carrier
Ethernet. This is in addition to support for evolution
in protocols like IP and TCP that mediate between ap-
plication and transmission.

Recent research in Xilinx Labs has led to four main
contributions which, taken together, offer a flexible and
high-performance solution to the problems posed by al-
lowing increasing diversity in packet processing:

• Introducing G, which is a domain-specific high-
level language for describing packet processing. G
focuses on packets and is protocol-agnostic, thus
supporting diversity and experimentation. In ad-
dition, G is concerned with the ‘what’ (specifica-

tion) not the ‘how’ (implementation). In other
words, G describes the problem, not the solution.

• Using the rich — but raw — concurrent processing
capabilities of modern Field Programmable Gate
Array (FPGA) devices to enable the creation of
tailored virtual processing architectures that match
the individual needs of particular packet process-
ing solutions. These provide the required packet
processing performance.

• Demonstrating a fast compiler that maps a G de-
scription to a matching virtual architecture, which
is then mapped to an FPGA-based implementa-
tion. This facilitates experimentation both with
options for the packet processing itself and with
options for the characteristics of the implementa-
tion. It also removes existing barriers to ease of
use of FPGAs by non-hardware experts.

• Generating modules with standard interfaces that
are harmonious with the Click [8] modular router
framework. This facilitates the assembly of com-
plete network node capabilities by smoothly inte-
grating varied FPGA-based components, and by
interfacing processor-based components.

The technology that has been developed is scaleable.
The initial target of the research was networking at
10Gb/s and above rates, with current experiements ad-
dressing 100Gb/s rates. However, going in the other
direction, the G technology is also applicable to the
current NetFPGA platform, for single 1Gb/s rate chan-
nels, or an aggregate 4Gb/s rate channel. In order to
enable seamless integration with NetFPGA, wrappers
have been developed that allow the generated mod-
ules to be dropped into the standard packet processing
pipeline used in NetFPGA designs.

In this paper, we first provide a short overview of G
and the compilation of G to FPGA-based modules. We
then describe how these modules can be integrated and
tested on the NetFPGA platform. This is illustrated by
an example where G is used to describe VLAN header
manipulation, and this is added into the reference router
datapath.

2. OVERVIEW OF G
The full version of the G language is targeted at spec-

ifying requirements across network processing. The ini-
tial implementation has focused on a subset of G that is
concerned with expressing rules for packet parsing and
packet editing, the area which has been most neglected
in terms of harnessing FPGA technology to its best ef-
fect. Other aspects of G beyond this subset are still the
subject of continuing research.

Although independent of particular implementation
targets, a G description is mapped onto an abstract
‘black box’ component that may be integrated with
other components to form complete packet processing
— or more general processing — systems. The setting
for such components is that of the Click modular router
framework [8] (an aspect not covered in this paper). In
Click, an individual system component is called an el-
ement, and each element has a number of input and
output ports. This enclosing Click context means that
a G description is regarded as describing the internal
behavior of an element, and also declaring the external
input and output ports of that element.

A G element description consists of three parts. The
first part is concerned with declaring the nature of the
element’s external interactions, that is, its input and
output ports. The second part is concerned with declar-
ing packet formats, and the format of any other data
structures used. Finally, the third part contains packet
handling rules.

Input and output ports in G have types, two of which
will be introduced here. The packet type is one on which
packets arrive (input) or depart (output), and this cor-
responds to the standard kind of (untyped) Click port.
The access type is one on which read and/or write data
requests can be made (output) or handled (input). This
is provided to allow interaction between elements, sep-
arately from the passing of packets.

G has no built-in packet formats, since it is delib-
erately protocol-agnostic to give maximum flexibility.
Packet formats and other data formats may either be
declared directly in a G description or be incorporated
from standard libraries through included header files. A
format consists of an ordered sequence of typed fields.
Types are scalar or non-scalar. The scalar types were
selected to be those deemed of particular relevance to
the needs of the packet processing domain. They are
bit vector, boolean (true or false), character (ISO 8859-
1), and natural number (in range 0 to 232

− 1). For
example, negative integers and real numbers were not
included. Non-scalar type fields may be of another de-
clared format, or be a list of sub-fields, or be a set of
alternative fields. G itself does not explicitly differen-
tiate between uses of packet fields (e.g., header, trailer,
payload) — this is expressed through the actual packet
handling rules.

The substantive portion of a G description provides
the rules to be applied for packet handling. These refer
as appropriate to the preceding declarations of ports
and formats. In particular, the handler heading for
the set of rules includes the name of the packet input
port and the name of the input packet format. Prior
to the rules themselves, local variables can be declared.
These have a lifetime corresponding solely to a partic-
ular packet being handled. Thus, if several packets are
being handled simultaneously, each has its own unique
set of the local variables. In general, concurrency is
maximized, here across multiple packets.

Packet handling rules implement the requirements of
protocols for handling packets. When writing rules, the
G user is liberated from having to think about when
rules are applied, or how rules are applied. In particu-
lar, the G user does not have to be concerned with where
fields occur within packets, or how packet data arrives
and departs at input and output ports. Application of
different rules is intended to be done as independently
as possible.

In terms of the rules themselves, there are two cat-
egories: packet rules and external state rules. Packet
rules are used to change the content or format of the
packet, or to approve it for forwarding. There are four
types of packet rules in the G subset being considered:

• Set: change packet fields

• Insert: insert one or more additional fields into
the packet

• Remove: remove one or more fields from the packet

• Forward: indicate that the packet should be out-
put after handling

For a simple forwarding function, combinations of set
and forward rules are sufficient. For encapsulation or
decapsulation, for example, insert or remove rules rep-
sectively are used also. External state rules are used to
perform reading and writing of arbitrary data format
values on external access ports. These rules can option-
ally specify additional read or write parameters (e.g.,
memory addresses, lookup keys, or function arguments,
depending on the type of external element).

Guards provide for the conditional application of rules,
and so form the basis for packet parsing and simple
packet classification. The Boolean expression within a
guard condition is always fully evaluated and tested for
truth before the guarded rule will be applied. There
can be a nest of disjoint guarded rules, in which each
sequential guard condition is always fully evaluated and
tested for falsity before a subsequent rule in the nest will
be considered. In other words, the first rule in the nest
with a true guard condition, or a final unguarded rule if
none of the preceding rules have a true guard condition,
is the one that is applied.

2

Figure 1: Generated module

3. COMPILATION OF G TO FPGA

3.1 Underlying principles
The compilation of G towards an FPGA implementa-

tion is founded upon three important principles: (i) an
expected low level of dependencies between rules in G
descriptions; (ii) the creation of virtual architectures to
implement the packet handling rules; and (iii) the gen-
eration of modules with standard interfaces that can be
plugged together to create complete systems.

The first principle is derived from observation of the
nature of packet parsing and editing for protocols. There
is considerable independence in how packet fields are
treated with respect to other packet fields. This gives
packet processing a distinctive flavor when compared
with normal data processing or digital signal process-
ing. The fruit of the independence is to provide greater
opportunity for concurrent operations, with consequent
benefits for throughput and latency. In turn, the huge
amount of potential for concurrent processing in an
FPGA provides the physical support for this. The G
language itself is designed to encourage the expression
of independence in descriptions, something attractive
to its user but also avoiding the need for too much ‘au-
tomatic discovery of parallelism’ magic in the compiler.

The second principle reveals an analogy between vir-
tual networks and virtual architecture. Just as it is ben-
eficial to implement problem-specific networks on pro-
grammable physical infrastructure, so it is beneficial to
implement problem-specific microarchitectures on the
programmable physical infrastructure of an FPGA. The
G compiler builds a processing microarchitecture that
matches the needs of the particular G description. This
contrasts with the usual need to contort the problem
to fit a fixed microarchitecture, whether expressing it
sequentially in C for a normal processor, or warping it
to fit the properties of a specialized network processor.

The third principle is that each G description is com-
piled to generate a module targeted at an FPGA, and
that this module has standard interfaces. This is so
that it can be integrated with other modules, either
also generated from G or from other sources, to build a
complete FPGA-based system.

Figure 1 shows a high-level schematic of the gener-
ated module. For this research, Xilinx FPGA devices
have been the target technology, so the module interfac-
ing was chosen for compatibility with standard modules
produced by Xilinx. Packet input and output ports in
the G description are mapped to module interfaces that
use the LocalLink standard [12] for signaling packets
word-wise between modules. Access ports are mapped
to interfaces that can follow several different standards
for accessing modules that support read/write requests.

3.2 Compilation process
The generated module is not described directly in

terms of the underlying FPGA resources: programmable
logic gates, interconnect, and other embedded units. It
is described in an intermediate form, expressed in a
hardware description language, VHDL in the case of
this compiler. The intent is to generate VHDL of a
quality comparable with that achieved by hand design,
in a much shorter time and a much more maintainable
manner. The VHDL description is then processed by
the standard design tools provided for FPGAs, which
have had many thousands of person-years devoted to
achieving high quality of results. In particular, these
tools seek to harness all of the features of the specific
target FPGA. Thus, the G compiler itself is decoupled
from specific FPGA device detail, and works in partner-
ship with an FPGA vendor’s specific processing tools.

Since a G description is abstracted from any imple-
mentation detail, additional input is supplied to the
compiler. This input concerns the nature of the in-
terfaces to the module. It includes structural details,
such as word width and minimum/maximum packet
sizes, and temporal details of required throughput. At
present, the compiler reports on achieved latency and
achieved FPGA resource count; in the future, these will
also be supplied as targets to the the compiler. The
main steps carried out by the compiler are:

1. Parsing of the G description, and of the addi-
tional implementation-specific information.

2. Analysis to determine dependencies through mul-
tiple uses of packet fields or local variables, or
through multiple uses of external access ports.

3. Partitioning of rules into dependency-respecting
clusters to form an optimal parallel processing mi-
croarchiture.

4. Scheduling of rule applications within each clus-
ter to respect arrival and departure times of packet
data via word-wise interfaces, and the word-wise
nature of access interfaces.

5. Generating a VHDL description of a module that
implements the virtual packet-handling architec-
ture, plus other inputs for the standard tools.

3

4. G DROP-IN MODULES
Generated G modules are a natural fit within the

NetFPGA framework. Streaming packet interfaces en-
able G modules to be instantiated at various locations
in the standard packet processing pipeline of the NetF-
PGA. However, to fully enmesh G modules into the
NetFPGA environment, some infrastructure modifica-
tions were necessary. The goal was to make G modules
indistinguishable from other NetFPGA libary compo-
nents. This allows the current NetFPGA implmenta-
tion approach to remain unaltered, while enabling the
inherent ability of the high-level simulation approach
that G components bring. Essentially, development of
G modules becomes an extension of the methodology
for contributing NetFPGA modules [3].

A G component is packaged to appear as any other
NetFPGA module, such as the input arbiter or out-
put port lookup modules used in the reference router
project. Figure 2 shows a wrapped G module. The
G module is wrapped amongst various infrastructure
pieces. An input-side protocol bridge converts from
the NetFPGA bus signaling protocol to Xilinx’s LocalL-
ink signaling protocol [12]. G modules can operate as
pipeline stages, as they support cut-through processing
mode. The streaming LocalLink interfaces enable this
desirable feature. Once the G module begins to emit
the packet, it is sent through the output-side protocol
bridge that converts back to the NetFPGA signaling
protocol from LocalLink.

rdy

P
rotocol B

ridge P
ro

to
co

l B
rid

geG

Module

BRAM

FIFO

dst_rdy

src_rdy

rem

data data

rem

eof

src_rdy

dst_rdy

sofsof

eof

ctrl

wr

rdy

data data

ctrl

wr

Figure 2: G Drop-in Module

The structure shown in Figure 2 is actually a top-level
verilog wrapper. This wrapper instantiates the proto-
col bridges, the compiler-generated VHDL G module
hierarchy, and the access components attached to the
G module, such as registers, FIFOs, or BRAMs. This
wrapper is auto-generated by a Perl script that scans
the G module for interface signals.

5. EXAMPLE
The following section highlights the methodology in

using a G module in the NetFPGA framework. For il-
lustrative purposes, a simple VLAN extraction compo-
nent will serve as the G component. The functionality
of VLAN extraction is to remove VLAN tags attached
to packet data that are no longer necessary to aid rout-
ing.

5.1 Step 1: Setup environment
The standard directory structure associated with the

NetFPGA environment should be utilized. Users work
out of the projects directory. Files that are developed
for using G should be placed in a new directory, gsrc.
This includes all g, xml, fv, testbench, and synthesis
files. The expected structure is shown in Figure 3.

NF2

src sw synth verifincludegsrcdoc

projectslibbitfilesbin

my_project

regress

Figure 3: Environment directory structure

5.2 Step 2: Compose G
The first development step in utilizing G is to com-

pose the G to describe the desired functionality. The
entire G for the VLAN extraction example is shown be-
low. A companion file is created to describe the char-
acteristics of the interface ports, such as the width.

element vlan_extract{

input packetin : packet;

output packetout : packet;

#define VLAN_TYPE 0x8100

#define NON_VLAN_TYPE 0xabcd

format MyPacket = (

IOQHeader : (

dst_port_one_hot : 8,

resv : 8,

word_length : 16,

src_port_binary : 16,

byte_length : 16

),

type : 16,

VLAN_header : 32,

: *

);

4

handle MyPacket on packetin {

[type == VLAN_TYPE]{

remove VLAN_header;

set type = NON_VLAN_TYPE;

set IOQHeader.word_length =

IOQHeader.word_length - 1;

set IOQHeader.byte_length =

IOQHeader.byte_length - 8;

}

forward on packetout;

}

}

The packet format for this example defines the NetF-
PGA control header (IOQHeader), the type, and the
VLAN header. The remainder of the packet is indicated
using the * field to mean that the VLAN header is the
last field of the packet this G module is interested in.
The packet handler for this example is relatively sim-
ple. The type field is checked. If it is a VLAN type,
the VLAN header is removed, and the control header
is updated to reflect that there is one less word in the
packet. Finally, the packet is forwarded on the output
packet interface.

5.3 Step 3: High-level G simulation
The functionality of the written G description must

be verified. The G development environment comes
with two tools to aid with high-level G description ver-
ification. The first is gdebug. This tool steps through a
G description, allowing the user to select from a list of
available actions to invoke. (Recall that G descriptions
are declarative rather than imperative, so multiple ac-
tions could potentially be executed at any given debug
step.) The second tool is gsim. This tool reads packet
instances corresponding to input and produces the re-
sulting output. The gsim tool is the main simulation
vehicle for G descriptions.

Packet instances are created through use of the gfv
language (G format value). This language is used to
specify the values that packet fields can take. An ex-
ample of this is shown below.

formatvalue ioq = (

0x20 : 8,

0 : 8,

4 : 16,

1 : 16,

0x20 : 16

);

formatvalue test1 = (

: ioq,

[0x8100 | 0xaaaa] : 16,

0xfeedcafe : 32,

0x000011112222 : 48,

0x1011121314151617 : 64,

0x18191a1b1c1d1e1f : 64

);

This format value description will create two packet
instances to input. One instance will fill the type field
with 0x8100 and the other instance with 0xAAAA. The
gsim tool reads these packet instances and simulates
the expected output. The processed output for the first
packet instance is shown below. Note the inclusion of
field names matched to bit patterns in the output. This
aids quick verification. Simulation with gsim is a fast
process, enabling quick functional verification cycles.

formatvalue test1_1 = (

: (

0x20 : bit[8] /* dst_port_one_hot */,

0x00 : bit[8] /* resv */,

0x0003 : bit[16] /* word_length */,

0x0001 : bit[16] /* src_port_binary */,

0x0018 : bit[16] /* byte_length */

) /* IOQHeader */ ,

0xabcd : bit[16] /* type */,

0x000011112222 : bit[48],

0x1011121314151617 : bit[64],

0x18191a1b1c1d1e1f : bit[64]

);

5.4 Step 4: Embed in NetFPGA pipeline
This G module fits between the input arbiter and

the output port lookup modules in the reference router
pipeline, as shown in Figure 4. G modules are cur-
rently limited to support single input and output packet
streaming interfaces, so G modules can only be placed
between the input arbiter and the output queues in the
reference router pipeline.

Queues

Input

Arbiter

VLAN

Extract

Output

Lookup

Output

Queues

Input

Figure 4: VLAN extraction G module included

in reference router pipeline.

To include the G module, the user data path ver-
ilog top-level is modified to instantiate the G wrap-
per and wire it into the data path. The user data path
file found in NF2/lib/verilog/user data path/reference -
user data path/src/ is copied into and modified within
the src directory of the project. Recall that the G wrap-
per instantiates protocol bridges, the G module itself,
and any access memories that the G module uses.

5

5.5 Step 5: Simulate system
The simulation environment for NetFPGA is at the

HDL level. The G compiler produces synthesizable and
simulation-ready VHDL, so the simulation scripts dis-
tributed with a standard NetFPGA distribution were
modified to incorporate simulation of G components.
These scripts are run in the same manner as any other
NetFPGA project. Test data and regression tests are
also created in a similar way.

5.6 Step 6: Implement
The build scripts have also been modified to accom-

modate the synthesis of G components. These scripts
are run as if a standard NetFPGA project is being con-
structed.

6. RELATED WORK
Various domain-specific packet processing languages

have been proposed. PacLang [4] is an imperative, con-
current, linearly typed language designed for expressing
packet processing applications. FPL [2] is a functional
protocol processing language for performing complex
packet classification and analysis. PPL [7] is another
functional programming language for packet process-
ing, oriented towards TCP/IP as well as deep packet
inspection. SNORT [10] is a well-known intrusion de-
tection system based on complex rule sets that specify
the processing of packet headers and the matching of
patterns in packet payloads.

There has been considerable research and develop-
ment on compiling C to FPGA (so-called ‘C-to-gates’).
In general, C subsets and/or C annotated with pragmas
must be used. A focus has been on loop unrolling as a
means of introducing concurrency, particularly for dig-
ital signal processing applications. Examples include
Catapult C [9], Handel-C [1], SpecC [5], Streams-C
(now Impulse C) [6], and Synfora C [11]. To date, there
has been little evidence of this style of technology being
of benefit for high-speed packet processing.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented the G language and the effi-

cient compilation of G to FPGA-based modules. In par-
ticular, it has presented a new framework which allows
G modules to be easily incorporated into NetFPGA-
based system designs. Taken together, these advances
will ensure greater ease of use for networking experts
who are not familiar with traditional FPGA design ap-
proaches.

The paper focused on just a subset of the full G lan-
guage. Subsequent publications will explore other as-
pects including, for example: describing relationships
between packets and hence functions like segmentation
and reassembly; structuring of packet handlers and hence

modularity between protocols; and support for more
flexible packet formats. Ultimately, G is intended to
cover the full spectrum of packet processing.

Future work will include seeking better integration
between the standard software Click environment and
an FPGA Click environment that has been developed
around G. The linkage to the NetFPGA platform now
offers the hardware contribution to developing an ecosys-
tem around Click and G. It provides a convenient ba-
sis for interfacing software Click elements with FPGA-
based elements described in G, thus enabling experi-
ments where time-critical data plane functions benefit
from the speed of the FPGA.

8. REFERENCES
[1] Celoxica. Handel-C. www.celoxica.com.
[2] D. Comer. Network Systems Design Using

Network Processors, Agere version. Prentice Hall,
2004.

[3] G. A. Covington, G. Gibb, J. Naous,
J. Lockwood, and N. McKeown. Methodology to
contribute netfpga modules. In International
Conference on Microelectronic Systems Education
(submitted to), 2009.

[4] R. Ennals, R. Sharp, and A. Mycroft. Linear
types for packet processing. In Proc. ESOP 2004,
pages 204–218, Barcelona, Spain, Mar. 2004.
Springer-Verlag LNCS 2986.

[5] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and
Methodology. Kluwer, 2000.

[6] M. Gokhale, J. Stone, J. Arnold, and
M. Kalinowski. Stream-oriented FPGA computing
in the Streams-C high level language. In Proc.
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 49–56,
Napa, CA, Apr. 2000.

[7] IP Fabrics. Packet Processing Language (PPL).
www.ipfabrics.com.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click modular router. ACM
Transactions on Computer Systems,
18(3):263–297, August 2000.

[9] Mentor. Catapult C. www.mentor.com.
[10] M. Rosesch. SNORT — lightweight intrusion

detection for networks. In Proc. LISA 1999, pages
229–238, Seattle, WA, Nov. 1999.

[11] Synfora. Synfora C. www.synfora.com.
[12] Xilinx. FPGA and CPLD solutions.

www.xilinx.com.

6

NetThreads: Programming NetFPGA with Threaded
Software

Martin Labrecque, J. Gregory Steffan
ECE Dept., University of Toronto

{martinl,steffan}@eecg.toronto.edu

Geoffrey Salmon, Monia Ghobadi,
Yashar Ganjali

CS Dept. University of Toronto
{geoff, monia, yganjali}@cs.toronto.edu

ABSTRACT
As FPGA-based systems including soft processors become
increasingly common, we are motivated to better understand
the architectural trade-offs and improve the efficiency of
these systems. The traditional forwarding and routing are
now well understood problems that can be accomplished
at line speed by FPGAs but more complex applications
are best described in a high-level software executing on
a processor. In this paper, we evaluate stateful network
applications with a custom multithreaded soft multiproces-
sor system-on-chip—as an improvement on previous work
focusing on single-threaded off-the-shelf soft processors— to
demonstrate the features of an efficient yet usable parallel
processing system along with potential avenues to improve
on its main bottlenecks.

1. INTRODUCTION
The NetFPGA development platform [1] allows networking
researchers to create custom hardware designs affordably,
and to test new theories, algorithms, and applications at
line-speeds much closer to current state-of-the-art. The
challenge is that many networking researchers are not nec-
essarily trained in hardware design; and even for those that
are, composing packet processing hardware in a hardware-

description language is time consuming and error prone.

Improvements in logic density and achievable clock frequen-
cies for FPGAs have dramatically increased the applicability
of soft processors—processors composed of programmable
logic on the FPGA. Despite the raw performance drawbacks,
a soft processor has several advantages compared to creating
custom logic in a hardware-description language: (i) it is
easier to program (e.g., using C), (ii) it is portable to different
FPGAs, (iii) it is flexible (i.e., can be customized), and (iv)
it can be used to manage other components/accelerators in
the design. However, and most importantly, soft processors
are very well suited to packet processing applications that
have irregular data access and control flow, and hence
unpredictable processing times.

1.1 NetThreads
In this paper we present NetThreads, a NetFPGA-based
soft multithreaded multiprocessor architecture. There are
several features of our design that ease the implementation
of high-performance, irregular packet processing applica-
tions. First, our CPU design is multithreaded, allowing
a simple and area-efficient datapath to avoid stalls and
tolerate memory and synchronization latencies. Second, our
memory system is composed of several different memories
(instruction, input, output, shared), allowing our design to
tolerate the limited number of ports on FPGA block-RAMs
while supporting a shared memory. Third, our architecture
supports multiple processors, allowing the hardware design
to scale up to the limits of parallelism within the application.

We evaluate NetThreads using several parallel packet-
processing applications that use shared memory and
synchronization, including UDHCP, packet classification
and NAT. We measure several packet processing workloads
on a 4-way multithreaded, 5-pipeline-stage, two-processor
instantiation of our architecture implemented on NetFPGA,
and also compare with a simulation of the system. We find
that synchronization remains a significant performance
bottleneck, inspiring future work to address this limitation.

2. MULTITHREADED SOFT PROCES-

SORS
Prior work [2–6] has demonstrated that supporting mul-

tithreading can be very effective for soft processors. In
particular, by adding hardware support for multiple thread
contexts (i.e., by having multiple program counters and
logical register files) and issuing an instruction from a
different thread every cycle in a round-robin manner, a
soft processor can avoid pipeline bubbles without the need
for hazard detection logic [2, 4]: a pipeline with N stages
that supports N − 1 threads can be fully utilized without
hazard detection logic [4]. A multithreaded soft processor
with an abundance of independent threads to execute is
also compelling because it can tolerate memory and I/O
latency [5], as well as the compute latency of custom
hardware accelerators [6]. Such designs are particularly
well-suited to FPGA-based processors because (i) hazard
detection logic can often be on the critical path and can
require significant area [7], and (ii) using the block RAMs
provided in an FPGA to implement multiple logical register
files is comparatively fast and area-efficient.

The applications that we implement require (i) synchroniza-

tion between threads, resulting in synchronization latency
(while waiting to acquire a lock) and (ii) critical sections

(while holding a lock). To fulfil these requirements in a way
that can scale to more than one processor, we implement
locks with memory-mapped test-and-set registers.

2.1 Fast Critical Sections via Thread Schedul-

ing with Static Hazard Detection
While a multithreaded processor provides an excellent op-
portunity to tolerate the resulting synchronization latency,
the simple round-robin thread-issue schemes used previously
fall short for two reasons: (i) issuing instructions from a
thread that is blocked on synchronization (e.g., spin-loop
instructions or a synchronization instruction that repeatedly
fails) wastes pipeline resources; and (ii) a thread that
currently owns a lock and is hence in a critical section
only issues once every N − 1 cycles (assuming support for
N − 1 thread contexts), exacerbating the synchronization
bottleneck for the whole system. Hence we identified a
method for scheduling threads that is more sophisticated
than round-robin but does not significantly increase the
complexity nor area of our soft multithreaded processor.

In our approach we de-schedule any thread that is awaiting
a lock. In particular, any such thread will no longer have
instructions issued until any lock is released in the system—
at which point the thread may spin once attempting to
acquire the lock and if unsuccessful it is blocked again.1

Otherwise, for simplicity we would like to issue instructions
from the unblocked threads in round-robin order.

To implement this method of scheduling we must first
overcome two challenges. The first is relatively minor:
to eliminate the need to track long latency instructions,
our processors replay instructions that miss in the cache
rather than stalling [5]. With non-round-robin thread
scheduling, it is possible to have multiple instructions from
the same thread in the pipeline at once—hence to replay an
instruction, all of the instructions for that thread following
the replayed instruction must be squashed to preserve the
program order of instructions execution.

The second challenge is greater: to support any thread
schedule other than round-robin means that there is a
possibility that two instructions from the same thread might
issue with an unsafe distance between them in the pipeline,
potentially violating a data or control hazard. We solve this
problem by performing static hazard detection: we identify
hazards between instructions at compile time and encode
hazard information into spare bits in the MIPS instruction
encoding, decoding it when instructions are fetched into the
instruction cache, and storing it by capitalizing on spare bits
in the width of FPGA block-RAMs.

3. MULTIPROCESSOR ARCHITECTURE
Our base processor is a single-issue, in-order, 5-stage, 4-
way multithreaded processor, shown to be the most area-
efficient compared to a 3- and 7-stage pipeline in earlier
work [5]. We eliminate the hardware multipliers from our

1Note that a more sophisticated approach that we leave for
future work would only unblock threads that are waiting on
the particular lock that was released.

packet packet
input output

to DDR2 SDRAM

synch. unit

b
u
ss

es

instr.

data

input mem.

output mem.

buffer buffer
outputinput

I$processor
4−threadI$processor

4−thread

data
cache

Figure 1: The architecture of a 2-processor soft
packet multiprocessor.

processors, which are not heavily used by our applications.
The processor is big-endian which avoids the need to perform
network-to-host byte ordering transformations. To take
advantage of the space available in the FPGA, we replicate
our base processor core and interconnect the replicas to
provide them with a coherent common view of the shared
data.

As shown in Figure 1, the memory system is composed of a
private instruction cache for each processor, and three data
memories that are shared by all processors; this design is
sensitive to the two-port limitation of block RAMs available
on FPGAs. The first memory is an input buffer that receives
packets on one port and services processor requests on the
other port via a 32-bit bus, arbitrated across processors. The
second is an output memory buffer that sends packets to
the NetFPGA output-queues on one port, and is connected
to the processors via a second 32-bit arbitrated bus on the
second port. Both input and output memories are 16KB,
allow single-cycle random access and are controlled through
memory-mapped registers; the input memory is read-only
and is logically divided into ten fixed-sized packet slots. The
third is a shared memory managed as a cache, connected
to the processors via a third arbitrated 32-bit bus on one
port, and to a DDR2 SDRAM controller on the other port.
For simplicity, the shared cache performs 32-bit line-sized
data transfers with the DDR2 SDRAM controller (similar
to previous work [8]), which is clocked at 200MHz. The
SDRAM controller services a merged load/store queue of 16
entries in-order; since this queue is shared by all processors
it serves as a single point of serialization and memory
consistency, hence threads need only block on pending loads
but not stores. Finally, each processor has a dedicated
connection to a synchronization unit that implements 16
mutexes.

Soft processors are configurable and can be extended with
accelerators as required, and those accelerators can be
clocked at a separate frequency. To put the performance of
the soft processors in perspective, handling a 109 bps stream
(with an inter-frame gap of 12 bytes) with 2 processors
running at 125 MHz implies a maximum of 152 cycles per
packet for minimally-sized 64B packets; and 3060 cycles per
packet for maximally-sized 1518B packets. Since our multi-

processor architecture is bus-based, in its current form it will
not easily scale to a large number of processors. However,
as we demonstrate later in Section 6, our applications are
mostly limited by synchronization and critical sections, and
not contention on the shared buses; in other words, the
synchronization inherent in the applications is the primary
roadblock to scalability.

4. OUR NETFPGA PROGRAMMING EN-

VIRONMENT
This section describes our NetFPGA programming environ-
ment including how software is compiled, our NetFPGA
configuration, and how we do timing, validation, and mea-
surement.

Compilation: Our compiler infrastructure is based on
modified versions of gcc 4.0.2, Binutils 2.16, and Newlib

1.14.0 that target variations of the 32-bit MIPS I [9] ISA.
We modify MIPS to support 3-operand multiplies (rather
than MIPS Hi/Lo registers [4,7]), and eliminate branch and
load delay slots. Integer division and multiplication are both
implemented in software. To minimize cache line conflicts in
our direct-mapped data cache, we align the top of the stack
of each software thread to map to equally-spaced blocks in
the data cache.

NetFPGA Configuration: Our processor designs are
inserted inside the NetFPGA 2.1 Verilog infrastructure [1],
between a module arbitrating the input from the four 1GigE
Media Access Controllers (MACs) and a CPU DMA port
and a module managing output queues in off-chip SRAM.
We added to this base framework a memory controller
configured through the Xilinx Memory Interface Generator
to access the 64 Mbytes of on-board DDR2 SDRAM. The
system is synthesized, mapped, placed, and routed under
high effort to meet timing constraints by Xilinx ISE 10.1.03
and targets a Virtex II Pro 50 (speed grade 7ns).

Timing: Our processors run at the clock frequency of
the Ethernet MACs (125MHz) because there are no free
PLLs (a.k.a. Xilinx DCMs) after merging-in the NetFPGA
support components. Due to these stringent timing require-
ments, and despite some available area on the FPGA, (i)
the private instruction caches and the shared data write-
back cache are both limited to a maximum of 16KB, and
(ii) we are also limited to a maximum of two processors.
These limitations are not inherent in our architecture, and
would be relaxed in a system with more PLLs and a more
modern FPGA.

Validation: At runtime in debug mode and in RTL sim-
ulation (using Modelsim 6.3c [10]) the processors generate
an execution trace that has been validated for correctness
against the corresponding execution by a simulator built on
MINT [11]. We also extended the simulator to model packet
I/O and validated it for timing accuracy against the RTL
simulation. The simulator is also able to process packets
outgoing or incoming from network interfaces, virtual net-
work (tap) devices and packet traces.

API: The memory mapped clock and packet I/O registers
are accessible through a simple non-intrusive application
programming interface (the API has less than twenty calls),

that is easy to build upon. We have developed a number
of test applications providing a wealth of routines such as
bitmap operations, checksum routines, hashtable and read-
write locks.

Measurement: We drive our design, for the packet echo
experiment, with a generator that sends copies of the same
preallocated packet through Libnet 1.4 and otherwise with
a modified Tcpreplay 3.4.0 that sends packet traces from
a Linux 2.6.18 Dell PowerEdge 2950 system, configured
with two quad-core 2GHz Xeon processors and a Broadcom
NetXtreme II GigE NIC connecting to a port of the
NetFPGA used for input and a NetXtreme GigE NIC
connecting to another NetFPGA port used for output.
To simplify the analysis of throughput measurements, we
allow packets to be processed out-of-order so long as the
correctness of the application is preserved. We characterize
the throughput of the system as being the maximum
sustainable input packet rate. We derive this rate by finding,
through a bisection search, the smallest fixed packet inter-
arrival time where the system does not drop any packet when
monitored for five seconds—a duration empirically found
long enough to predict the absence of future packet drops at
that input rate.

5. APPLICATIONS
In contrast with prior evaluations of packet-processing
multiprocessor designs [12–14] we focus on stateful

applications—i.e., applications in which shared, persistent
data structures are modified during the processing of most
packets. When the application is composed of parallel
threads, accesses to such shared data structures must
be synchronized. These dependences make it difficult
to pipeline the code into balanced stages of execution
to extract parallelism. Alternatively, we adopt the run-

to-completion/pool-of-threads model, where each thread
performs the processing of a packet from beginning-to-end,
and where all threads essentially execute the same program
code.

To take full advantage of the software programmability
of our processors, our focus is on control-flow intensive
applications performing deep packet inspection (i.e., deeper
than the IP header). Network processing software is nor-
mally closely-integrated with operating system networking
constructs; because our system does not have an operating
system, we instead inline all low-level protocol-handling
directly into our programs. To implement time-stamps and
time-outs we require the hardware to implement a device
that can act as the system clock. We have implemented
the following packet processing applications, as detailed in
Table 1 (Section 6.1), along with a precise traffic generator
tool evaluated in another paper [15].

UDHCP is derived from the widely-used open-source DHCP
server. The server processes a packet trace modeling the
expected DHCP message distribution of a network of 20000
hosts [16]. As in the original code, leases are stored in a
linearly traversed array and IP addresses are pinged before
being leased, to ensure that they are unused.

Classifier performs a regular expression matching on TCP
packets, collects statistics on the number of bytes transfered

Figure 2: Throughput (in packets per second)
measured on the NetFPGA with either 1 or 2 CPUs.

and monitors the packet rate for classified flows to exemplify
network-based application recognition. In the absence of a
match, the payloads of packets are reassembled and tested
up to 500 bytes before a flow is marked as non-matching.
As a use case, we configure the widely used PCRE matching
library [17] with the HTTP regular expression from the
“Linux layer 7 packet classifier” [18] and exercise our system
with a publicly available packet trace [19] with HTTP server
replies added to all packets presumably coming from an
HTTP server to trigger the classification.

NAT exemplifies network address translation by rewriting
packets from one network as if originating from one machine,
and appropriately rewriting the packets flowing in the other
direction. As an extension, NAT collects flow statistics and
monitors packet rates. Packets originate from the same
packet trace as Classifier, and like Classifier, flow
records are kept in a synchronized hash table.

6. EXPERIMENTAL RESULTS
We begin by evaluating the raw performance that our system
is capable of, when performing minimal packet processing
for tasks that are completely independent (i.e., unsynchro-
nized). We estimate this upper-bound by implementing a
simple packet echo application that retransmits to a different
network port each packet received. With minimum-sized
packets of 64B, the echo program executes 300±10 dynamic
instructions per packet (essentially to copy data from the
input buffer to the output buffer as shown in Figure 1),
and a single round-robin CPU can echo 124 thousand
packets/sec (i.e., 0.07 Gbps). With 1518B packets, the
maximum packet size allowable by Ethernet, each echo task
requires 1300±10 dynamic instructions per packet. With
two CPUs and 64B packets, or either one or two CPUs
and 1518B packets, our PC-based packet generator cannot
generate packets fast enough to saturate our system (i.e.,
cannot cause packets to be dropped). This amounts to
more than 58 thousand packets/sec (>0.7 Gbps). Hence
the scalability of our system will ultimately be limited
by the amount of computation per packet/task and the
amount of parallelism across tasks, rather than the packet
input/output capabilities of our system.

Figure 3: Breakdown of how cycles are spent for
each instruction (on average) in simulation.

Figure 2 shows the maximum packet throughput of our
(real) hardware system with thread scheduling. We find
that our applications do not benefit significantly from the
addition of a second CPU due to increased lock and bus
contention and cache conflicts: the second CPU either
slightly improves or degrades performance, motivating us
to determine the performance-limiting factors.

6.1 Identifying the Bottlenecks
To reduce the number of designs that we would pursue in real
hardware, and to gain greater insight into the bottlenecks of
our system, we developed a simulation infrastructure. While
verified for timing accuracy, our simulator cannot reproduce
the exact order of events that occurs in hardware, hence
there is some discrepancy in the reported throughput. For
example, Classifier has an abundance of control paths
and events that are sensitive to ordering such as routines
for allocating memory, hash table access, and assignment
of mutexes to flow records. We depend on the simulator
only for an approximation of the relative performance and
behavior of applications on variations of our system.

To obtain a deeper understanding of the bottlenecks of our
system, we use our simulator to obtain a breakdown of how
cycles are spent for each instruction, as shown in Figure 3.
In the breakdown, a given cycle can be spent executing an
instruction (busy), awaiting a new packet to process (no
packet), awaiting a lock owned by another thread (locked),
squashed due to a mispredicted branch or a preceding
instruction having a memory miss (squashed), awaiting a
pipeline hazard (hazard bubble), or aborted for another
reason (other, memory misses or bus contention). Figure 3
shows that our thread scheduling is effective at tolerating
almost all cycles spent spinning for locks. The fraction of
time spent waiting for packets (no packet) is significant and
is a result of reducing the worst-case processing latency of
a small fraction of packets. The fraction of cycles spent
on squashed instructions (squashed) is significant with our
thread scheduling scheme: if one instruction must replay,
we must also squash and replay any instruction from that
thread that has already issued. The fraction of cycles spent
on bubbles (hazard bubble) is significant: this indicates
that the CPU is frequently executing instructions from only

Benchmark Dyn. Instr. Dyn. Sync. Sync. Uniq.
×1000 Instr. Addr.
/packet %/packet /packet

Reads Writes

UDHCP 34.9±36.4 90±105 5000±6300 150±60

Classifier 12.5±35.0 94±100 150±260 110±200

NAT 6.0±7.1 97±118 420±570 60±60

Table 1: Application statistics (mean±standard-
deviation): dynamic instructions per packet, dy-
namic synchronized instructions per packet (i.e., in a
critical section) and number of unique synchronized
memory read and write accesses.

Figure 4: Throughput in packets per second for NAT

as we increase the tolerance for dropping packets
from 0 to 5%, with either 1 or 2 CPUs.

one thread, with the other threads blocked awaiting locks.

In Table 1, we measure several properties of the computation
done per packet in our system. First, we observe that
task size (measured in dynamic instructions per second)
has an extremely large variance (the standard deviation
is larger than the mean itself for all three applications).
This high variance is partly due to our applications being
best-effort unpipelined C code implementations, rather than
finely hand-tuned in assembly code as packet processing
applications often are. We also note that the applications
spend over 90% of the packet processing time either awaiting
synchronization or within critical sections (dynamic syn-
chronized instructions), which limits the amount of par-
allelism and the overall scalability of any implementation,
and in particular explains why our two CPU implementation
provides little additional benefit over a single CPU. These
results motivate future work to reduce the impact of syn-
chronization, as discussed in Section 8.

Our results so far have focused on measuring throughput
when zero packet drops are tolerated (over a five second
measurement). However, we would expect performance to
improve significantly for measurements when packet drops
are tolerated. In Figure 4, we plot throughput for NAT

as we increase the tolerance for dropping packets from 0
to 5%, and find that this results in dramatic performance
improvements for both fixed round-robin and our more
flexible thread scheduling—confirming our hypothesis that
task-size variance is undermining performance.

6.2 FPGA resource utilization

Our two-CPU full system hardware implementation con-
sumes 165 block RAMs (out of 232; i.e., 71% of the total
capacity). The design occupies 15,671 slices (66% of the
total capacity) and more specifically, 23158 4-input LUTs
when optimized with high-effort for speed. Considering only
a single CPU, the synthesis results give an upper bound
frequency of 129MHz.

7. CONCLUSIONS

In most cases, network processing is inherently parallel
between packet flows. We presented techniques to improve
upon commercial off-the-shelf soft processors and take ad-
vantage of the parallelism in stateful parallel applications
with shared data and synchronization. We implemented a
multithreaded multiprocessor and presented a compilation
and simulation framework that makes the system easy to
use for an average programmer. We observed that synchro-
nization was a bottleneck in our benchmark applications and
plan to pursue work in that direction.

8. FUTUREWORK

In this section, we present two avenues to improve on
our architecture implementation to alleviate some of its
bottlenecks.

Custom Accelerators Because soft processors do not have
the high operating frequency of ASIC processors, it is useful
for some applications to summarize a block of instructions
into a single custom instruction [20]. The processor inter-
prets that new instruction as a call to a custom logic block
(potentially written in a hardware description language or
obtained through behavioral synthesis). We envision that
this added hardware would be treated like another processor
on chip, with access to the shared memory busses and able
to synchronize with other processors. Because of the bit-
level parallelism of FPGAs, custom instruction can provide
significant speedup to some code sections [21,22].

Transactional Execution When multiple threads/processors
collaborate to perform the same application, synchroniza-
tion must often be inserted to keep shared data coherent.
With multiple packets serviced at the same time and
multiple packet flows tracked inside a processor, the shared
data accessed by all threads is not necessarily the same,
and can sometimes be exclusively read by some threads.
In those cases, critical sections may be overly conservative
by preventively reducing the number of threads allowed
in a critical section. Reader and writer locks may not be
applicable, or useful, depending on the implementation. To
alleviate the problem, a possibility is to allow a potentially
unsafe number of threads in a critical section, detect
coherence violations if any, abort violated threads and
restart them in an earlier checkpointed state. If the number
of violations is small, the parallelism, and the throughput,
of the application can be greatly increased [23].

NetThreads is available online [24].

9. REFERENCES
[1] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,

P. Hartke, J. Naous, R. Raghuraman, and J. Luo,
“NetFPGA - an open platform for gigabit-rate
network switching and routing,” in Proc. of MSE ’07,
June 3-4 2007.

[2] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown,
“A multithreaded soft processor for SoPC area
reduction,” in Proc. of FCCM ’06, 2006, pp. 131–142.

[3] R. Dimond, O. Mencer, and W. Luk,
“Application-specific customisation of multi-threaded
soft processors,” IEE Proceedings—Computers and

Digital Techniques, vol. 153, no. 3, pp. 173– 180, May
2006.

[4] M. Labrecque and J. G. Steffan, “Improving pipelined
soft processors with multithreading,” in Proc. of FPL

’07, August 2007, pp. 210–215.

[5] M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Scaling soft processor systems,” in Proc. of FCCM

’08, April 2008, pp. 195–205.

[6] R. Moussali, N. Ghanem, and M. Saghir,
“Microarchitectural enhancements for configurable
multi-threaded soft processors,” in Proc. of FPL ’07,
Aug. 2007, pp. 782–785.

[7] M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Custom code generation for soft processors,” in Proc.

of RAAW ’06, Florida, US, December 2006.

[8] R. Teodorescu and J. Torrellas, “Prototyping
architectural support for program rollback using
FPGAs,” in Proc. of FCCM ’05, April 2005, pp. 23–32.

[9] S. A. Przybylski, T. R. Gross, J. L. Hennessy, N. P.
Jouppi, and C. Rowen, “Organization and VLSI
implementation of MIPS,” Stanford University, CA,
USA, Tech. Rep., 1984.

[10] Mentor Graphics Corp., “Modelsim SE,”
http://www.model.com, Mentor Graphics, 2004.

[11] J. Veenstra and R. Fowler, “MINT: a front end for
efficient simulation of shared-memory
multiprocessors,” in Proc. of MASCOTS ’94, NC,
USA, January 1994, pp. 201–207.

[12] T. Wolf and M. Franklin, “CommBench - a
telecommunications benchmark for network
processors,” in Proc. of ISPASS, Austin, TX, April
2000, pp. 154–162.

[13] G. Memik, W. H. Mangione-Smith, and W. Hu,
“NetBench: A benchmarking suite for network
processors,” in Proc. of ICCAD ’01, November 2001.

[14] B. K. Lee and L. K. John, “NpBench: A benchmark
suite for control plane and data plane applications for
network processors,” in Proc. of ICCD ’03, October
2003.

[15] G. Salmon, M. Ghobadi, Y. Ganjali, M. Labrecque,
and J. G. Steffan, “NetFPGA-based precise traffic
generation,” in Proc. of NetFPGA Developers

Workshop’09, 2009.

[16] B. Bahlmann, “DHCP network traffic analysis,”
Birds-Eye.Net, June 2005.

[17] “PCRE - Perl compatible regular expressions,”
[Online]. Available: http://www.pcre.org.

[18] “Application layer packet classifier for linux,” [Online].
Available: http://l7-filter.sourceforge.net.

[19] Cooperative Association for Internet Data Analysis,
“A day in the life of the internet,” WIDE-TRANSIT
link, January 2007.

[20] H.-P. Rosinger, “Connecting customized IP to the
MicroBlaze soft processor using the Fast Simplex Link
(FSL) channel,” XAPP529, 2004.

[21] R. Lysecky and F. Vahid, “A study of the speedups
and competitiveness of FPGA soft processor cores
using dynamic hardware/software partitioning,” in
Proc. of DATE ’05, 2005, pp. 18–23.

[22] C. Kachris and S. Vassiliadis, “Analysis of a
reconfigurable network processor,” in Proc. of IPDPS.
Los Alamitos, CA, USA: IEEE Computer Society,
2006, p. 173.

[23] C. Kachris and C. Kulkarni, “Configurable
transactional memory,” in Proc. of FCCM ’07, April
2007, pp. 65–72.

[24] “NetThreads - project homepage,” [Online]. Available:
http://netfpga.org/netfpgawiki/index.php/Projects:NetThreads.

NetFPGA-based Precise Traffic Generation

Geoffrey Salmon, Monia Ghobadi,
Yashar Ganjali

Department of Computer Science
University of Toronto

{geoff, monia, yganjali}@cs.toronto.edu

Martin Labrecque, J. Gregory Steffan
Department of Electrical and Computer

Engineering
University of Toronto

{martinl,steffan}@eecg.toronto.edu

ABSTRACT
Generating realistic network traffic that reflects different
network conditions and topologies is crucial for performing
valid experiments in network testbeds. Towards this goal,
this paper presents Precise Traffic Generator (PTG), a new
tool for highly accurate packet injections using NetFPGA.
PTG is implemented using the NetThreads platform, an
environment familiar to a software developer where mul-
tithreaded C programs can be compiled and run on the
NetFPGA. We have built the PTG to take packets gener-
ated on the host computer and transmit them onto a gigabit
Ethernet network with very precise inter-transmission times.
Our evaluations show that PTG is able to exactly reproduce
packet inter-arrival times from a given, arbitrary distribu-
tion. We demonstrate that this ability addresses a real prob-
lem in existing software network emulators — which rely on
generic Network Interface Cards for packet injections — and
predict that the integration of PTG with these emulators
would allow valid and convincing experiments which were
previously difficult or impossible to perform in the context
of network testbeds.

1. INTRODUCTION
Making any changes to the current Internet infrastructure is
extremely difficult, if possible at all. Any new network com-
ponent, protocol, or design implemented on a global scale
requires extensive and accurate testing in sufficiently real-
istic settings. While network simulation tools can be very
helpful in understanding the impact of a given change to a
network, their predictions might not be accurate due to their
simplified and restricted models and settings. Real network
experiments are extremely difficult too: network operators
usually do not like any modifications to their network, un-
less the proposed changes have been tested exhaustively in
a large scale network. The only remaining option for testing
the impact of a given change is using testbeds for network
experiments.

To have meaningful experiments in a testbed, one must have

realistic traffic. Generating high volumes of traffic is intrinsi-
cally difficult for several reasons. First, it is not always pos-
sible to use real network traces, as traces do not maintain the
feedback loop between the network and traffic sources (for
example the TCP closed-loop congestion feedback). Second,
using a large number of machines to generate the required
traffic is usually not an option, as it is extremely costly, and
difficult to configure and maintain. Finally, depending on
the purpose of the experiment, the generated traffic might
have different sensitivity requirements. For example, in the
context of testing routers with tiny buffers (e.g. 10-20 pack-
ets of buffering) even the slightest change in packet injection
patterns can have major implications for the results of the
experiment [1], whereas in the study of capacity planning
techniques, the results are only sensitive to the aggregate
bandwidth over relatively coarse timescales [2].

Commercial traffic generators are very useful for some exper-
iments, but they have their own drawbacks. They are usu-
ally very expensive and their proprietary nature makes them
very inflexible for research on new techniques and protocols.
Also, it has been shown that their packet injection times are
not accurate enough for time-sensitive experiments [3]. Ad-
ditionally, commercial traffic generators do not always im-
plement network protocols accurately: for example, Prasad
et al. [4] describe differences observed between a TCP Reno
packet sequence generated by a commercial traffic genera-
tor and the expected behavior of the standard TCP Reno
protocol.

An alternative to a commercial traffic generator is open
source packet generation software, where a small number
of machines are used to generate high volumes of realistic
traffic [2, 5]. These tools usually rely on generic hardware
components that, depending on the vendor and model, can
vary in their behavior; therefore, the output traffic might be
inaccurate. For example, generic Network Interface Cards
(NICs) usually provide little or no guarantees on the exact
packet injection times. As a result, the actual traffic pattern
depends on the NIC model and, depending on what model
is used, significant differences in the generated traffic can be
observed [1, 3].

Researchers at Stanford University have developed a packet
generator that is capable of generating more precise traf-
fic [6] (hereafter referred to as SPG), addressing the prob-
lems described above. The Stanford system is based on
NetFPGA, a PCI-based programmable board containing an

FPGA, four gigabit Ethernet ports, and memory. The SPG
system generates more accurate traffic by precisely repli-
cating the transmission times recorded in a pcap trace file,
similar to the operation of the tcpreplay software program;
this method eliminates the dependence between the gener-
ated traffic and the NIC model.

While the traffic that SPG generates is more realistic than
many prior approaches, it has several limitations. Because
the trace files are based on past measurements, the closed-
loop feedback for TCP sources (and any other protocol that
depends on the feedback from the system) is not accurately
captured. Furthermore, replaying a prerecorded trace on a
link with different properties (such as capacity and buffer
size) does not necessarily result in realistic traffic. Finally,
SPG can only (i) replay the exact packet inter-arrival times
provided by the trace file, or (ii) produce fixed inter-arrival
times between packets (i.e., ignoring the variation of packet
timings from the original trace).

In this paper, we introduce Precise Traffic Generator (PTG),
a NetFPGA-based packet generator with highly-accurate
packet injection times that can be easily integrated with
various software-based traffic generation tools. PTG has
the same accuracy level as SPG, but provides two key ad-
ditional features that make it useful in a larger variety of
network experiments: (i) packets in PTG are created dy-
namically and thus it can model the closed-loop behavior of
TCP and other protocols; (ii) PTG provides the ability to
follow a realistic distribution function of packet inter-arrival
times such as the probability distributed functions presented
by Katabi et al. [7]1.

PTG is built on NetThreads [8], a platform for developing
packet processing applications on FPGA-based devices and
the NetFPGA in particular. NetThreads is primarily com-
posed of FPGA-based multithreaded processors, providing
a familiar yet flexible environment for software developers:
programs are written in C, and existing applications can be
ported to the platform. In contrast with a PC or NIC-based
solution, NetThreads is similar to a custom hardware solu-
tion because it allows the programmer to specify accurate
timing requirements.

2. PRECISE TRAFFIC GENERATOR
In this section we present PTG, a tool which can precisely
control the inter-transmission times of generated packets. To
avoid implementing a packet generator in low-level hardware-
description language (how FPGAs are normally programmed),
we use NetThreads instead. We generate packets on the host
computer and send them to the NetFPGA over the PCI bus.
NetThreads provides eight threads that prepare and trans-
mit packets. This configuration is particularly well-suited
for packet generation: (i) the load of the threads’ execu-
tion is isolated from the load on the host processor, (ii) the
threads suffer no operating system overheads, (iii) they can
receive and process packets in parallel, and (iv) they have
access to a high-resolution system clock (much higher than
that of the host clock).

1Here, we assume the distribution of different flows and the
packet injection times are known a priori, and our goal is
to generate traffic that is as close as possible to the given
distribution.

In our traffic generator, packets are sent out of a single
Ethernet port of the NetFPGA, and can have any speci-
fied sequence of inter-transmission times and valid Ethernet
frame sizes (64-1518 bytes). PTG’s main objective is to pre-
cisely control the transmission times of packets which are
created in the host computer, continually streamed to the
NetFPGA, and transmitted on the wire. Streaming pack-
ets is important because it implies the generator can im-
mediately change the traffic in response to feedback. By
not requiring separate load and send phases for packets, the
PTG can support closed-loop traffic. PTG can easily be
integrated with existing traffic generators to improve their
accuracy at small time scales.

Let us start by going through the life cycle of a packet
through the system, from creation to transmission. First
a userspace process or kernel module on the host computer
decides a packet should be sent at a particular time. A
description of the packet, containing the transmission time
and all the information necessary to assemble the packet
is sent to the NetFPGA driver. In the driver, multiple
packet descriptions are combined together and copied to
the NetFPGA. Combining descriptions reduces the number
of separate transfers required and is necessary for sending
packets at the line rate of 1Gb/s. From there, the packet
descriptions are each given to a single thread. Each thread
assembles its packet in the NetThreads’ output memory.
Next, another thread sends all of the prepared packets in
the correct order at the requested transmission times. Fi-
nally, the hardware pipeline of the NetFPGA transmits the
packets onto the wire.

In the rest of this section we explain each stage of a packet’s
journey through the PTG in greater detail. We also describe
the underlying limitations which influence the design.

Packet Creation to Driver: The reasons for and context
of packet creation are application-specific. To produce re-
alistic traffic, we envision a network simulator will decide
when to send each packet. This simulation may be running
in either a userspace process, like ns-2 [9], or a Linux ker-
nel module, as in ModelNet [10]. To easily allow either ap-
proach, we send packets to the NetFPGA driver using Linux
NetLink sockets, which allow arbitrary messages to be sent
and received from either userspace or the kernel. In our tests
and evaluation, we create the packets in a userspace process.

At this stage, the messages sent to the NetFPGA driver
do not contain the entire packet as it will appear on the
wire. Instead, packets are represented by minimal descrip-
tions which contain the size of the packet and enough infor-
mation to build the packet headers. Optionally, the descrip-
tions can also include a portion of the packet payload. The
parts of the payload that are not set will be zeroes when the
packet is eventually transmitted. In Section 4, we mention a
work-around that may be useful when the contents of packet
payloads are important to an experiment.

Driver to NetThreads: We modified the driver provided
with NetFPGA to support the PTG. Its main task is to copy
the packet descriptions to the NetFPGA card using DMA
over the PCI bus. It also assembles the packet headers and
computes checksums.

Sending packets to the NetFPGA over the PCI bus intro-
duces some challenges. It is a 33MHz 32-bit bus with a top
theoretical transfer rate of 1056 Mb/s, but there are signif-
icant overheads even in a computer where the bus is not
shared. Most importantly, the number of DMA transfers
between the driver and NetFPGA is limited such that the
total throughput is only 260Mb/s when individually trans-
ferring 1518 byte packets. Limitations within the NetFPGA
hardware pipeline mean we cannot increase the size of DMA
transfers to the NetFPGA enough to reach 1 Gb/s. Instead
we settle for sending less than 1 Gb/s across the PCI bus
and rebuilding the packets inside the NetFPGA. Currently,
the packet payloads are simply zeroed, which is sufficient
both for our evaluation and for many of the tests we are
interested in performing with the PTG.

To obtain the desired throughput, the driver combines the
headers of multiple packets and copies them to the NetFPGA
in a single DMA transfer. Next, the NetFPGA hardware
pipeline stores them into one of the ten slots in the input
memory of the NetThreads system. If there is no empty
slot in the memory then the pipeline will stall, which would
quickly lead to dropped packets in the input queue of the
NetFPGA. To avoid this scenario, the software running on
the NetThreads platform sends messages to the driver con-
taining the number of packets that it has processed. This
feedback allows the driver to throttle itself and to avoid over-
running the buffers in the NetFPGA.

NetThreads to Wire: The PTG runs as software on the
NetThreads platform inside the NetFPGA. The driver sends
its messages containing the headers of multiple packets and
their corresponding transmission times, and the PTG needs
to prepare these packets for transmission and send them at
the appropriate times.

To achieve high throughput in NetThreads, it is important
to maximize parallelism and use all eight threads provided
by NetThreads. In the PTG, one thread is the sending
thread. By sending all packets from a single thread we can
ensure packets are not reordered and can easily control their
transmission time. Each of the other seven threads contin-
ually pop a job from a work queue, performs the job and
returns to the queue for another job. There are currently
two types of jobs: 1) receive and parse a message from the
driver and schedule further jobs to prepare each packet, and
2) prepare a packet by copying its header to the output
memory and notifying the sending thread when complete.

When preparing outgoing packets, most of the work per-
formed by the threads involves copying data from the input
memory to the output memory. As described in [8], the
buses to the input and output memories are arbitrated be-
tween both processors. For example, in a single clock cycle
only one of the processors can read from the input memory.
Similarly only one processor can write to the output memory
in a given cycle. Fortunately, these details are hidden from
the software, and the instructions squashed by an arbiter will
be retried without impacting the other threads [11]. At first,
it may appear that only one processor can effectively copy
packet headers from the input memory to the output mem-
ory at any given time. However, the instructions that im-
plement the memcpy function contain alternating loads and

stores. Each 32-bit value must be loaded from the input
memory into a register and then stored from the register
into the output memory. Therefore, if two threads are copy-
ing packet headers, their load and store instructions will
naturally interleave, allowing both threads to make forward
progress.

3. EVALUATION
In this section we evaluate the performance of PTG by fo-
cussing on its accuracy and flexibility and also present mea-
surements of an existing network emulator which clearly
demonstrate the need that PTG fulfills. By contrast, previ-
ous works presenting traffic generators usually evaluate the
realism of the resulting traffic [2,12]. While their evaluations
present large test runs and often attempt to replicate the
high-level properties seen in an existing network trace, our
evaluation of PTG reflects its intended use; PTG is meant
to complement existing traffic generators by allowing them
to precisely control when packets are transmitted. Thus, we
present relatively simple experiments where the most impor-
tant metric is the accuracy of packet transmission times.

We perform our evaluations using Dell Power Edge 2950
servers running Debian GNU/Linux 5.0.1 (codename Lenny)
each with an Intel Pro/1000 Dual-port Gigabit network card
and a NetFPGA. In each test, there is a single server sending
packets and a single server receiving packets and measur-
ing their inter-arrival times. In the experiment described in
Section 3.2, there is an additional server running a software
network emulator which routes packets between the sender
and receiver. The servers’ network interfaces are directly
connected – there are no intermediate switches or routers.

Since PTG’s main goal is to transmit packets exactly when
requested, the measurement accuracy is vital to the eval-
uation. As we discussed before, measuring arrival times
in software using tcpdump or similar applications is impre-
cise; generic NICs combined with packet dumping software
are intrinsically inaccurate at the level we are interested in.
Therefore, we use a NetFPGA as the NIC to measure packet
inter-arrival times at the receivers. Those receiving NetFP-
GAs are configured with the“event capturing module”of the
NetFPGA router design [1] which provides timestamps of
certain events, including when packets arrive at the router’s
output queues. To increase the accuracy of the timestamps,
we removed two parts of the router pipeline that could add
a variable delay to packets before they reach the output
queues. This simplification is possible because we are only
interested in measuring packets that arrive at a particular
port and the routing logic is unnecessary. The timestamps
are generated in hardware from the NetFPGA’s clock and
have a granularity of 8ns. We record these timestamps and
subtract successive timestamps to obtain the packet inter-
arrival times.

3.1 Sending Packets at Fixed Intervals
The simplest test case for the PTG is to generate pack-
ets with a fixed inter-transmission time. Comparing the
requested inter-transmission time with the observed inter-
arrival times demonstrates PTG’s degree of precision.

As explained in Section 2, PTG is implemented as software
running on what has previously been a hardware-only net-

work device, the NetFPGA. Even executing software, Net-
Threads should provide sufficient performance and control
for precise packet generation. To evaluate this, we compare
PTG’s transmission times against those of SPG, which is
implemented on the NetFPGA directly in hardware.

Requested
Inter-arrival PTG mean error SPG mean error

(ns) (ns) (ns)

1000000 8.57 8.46
500000 4.41 5.12
250000 3.89 3.27
100000 3.87 1.49
50000 1.87 0.77
25000 1.04 0.42
20000 0.82 0.35
15000 0.62 0.35
13000 0.54 0.27

Table 1: Comparing the mean error in ns between
the Precise Traffic Generator (PTG) and Stanford’s
packet generator (SPG)

Table 1 shows the mean absolute error between the observed
inter-arrival times and the requested inter-transmission times
for various requested intervals. For each interval, we trans-
mit 100000 packets of size 1518 bytes with both PTG and
SPG. For inter-transmission times less than 50µs, the aver-
age absolute error is less than 2ns for both packet generators.
Note that clock period of 1000BASE-T gigabit Ethernet is
8ns, so an average error of 2ns implies most of the inter-
transmission times are exactly as requested. This shows
that even though NetThreads is executing software, it still
allows precise control of when packets are transmitted.

Although both packet generators are of similar accuracy,
SPG has a limitation that makes it unsuitable for the role
we intend for the PTG. The packets sent by SPG must first
be loaded onto the NetFPGA as a pcap file before they can
be transmitted. This two-stage process means that SPG
can only replay relatively short traces that have been pre-
viously captured2. Although it can optionally replay the
same short trace multiple times to generate many packets,
it can not continually be instructed to send packets by a
software packet generator or network emulator using a se-
ries of departure times that are not known a priori. PTG,
on the other hand, can be used to improve the precision of
packet transmissions sent by any existing packet generation
software.

3.2 Accuracy of Software Network Emulators
The goal of network emulators is to allow arbitrary networks
to be emulated inside a single machine or using a small num-
ber of machines. Each packet’s departure time is calculated
based on the packet’s path through the emulated network
topology and on interactions with other packets. The result
of this process is an ordered list of packets and corresponding
departure times. How close the actual transmission times

2The largest memory on the board is 64MB which is only
about 0.5 seconds of traffic at the 1 Gb/s line rate.

are to these ideal departure times is critical for the precision
of the network emulator.

Existing software network emulators have been built on Linux
and FreeBSD [10, 13, 14]. To minimize overhead, all three
process packets in the kernel and use a timer or interrupt
firing at a fixed interval to schedule packet transmissions.
They effectively divide time into fixed-size buckets, and all
packets scheduled to depart in a particular bucket are col-
lected and sent at the same time. Clearly, the bucket size
controls the scheduling granularity; i.e., packets in the same
bucket will essentially be sent back-to-back.

 0

 0.2

 0.4

 0.6

 0.8

 1

T 0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 1: Effect of NIST Net adding delay to packets
sent 70 µs apart. T = 12.304µs is the time it takes to
transmit a single 1518-byte packet at 1 Gb/s: pack-
ets with that inter-arrival are effectively received
back-to-back.

 0

 0.2

 0.4

 0.6

 0.8

 1

 450 500 550 600 650 700 750 800

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 2: Effect of NIST Net adding delay to packets
sent 640 µs apart.

To quantify the scheduling granularity problem, we focus
on the transmission times generated by NIST Net [13], a
representative network emulator. Here, we generate UDP
packets with 1472 byte payloads at a fixed arrival rate us-
ing the PTG. The packets are received by a server run-

 0

 0.2

 0.4

 0.6

 0.8

 1

 450 500 550 600 650 700 750 800

P
er

ce
nt

ag
e

Observed Inter-arrival Time (µs)

Empirical CDF

PTG
NIST Net

Figure 3: Effect of NIST Net adding delay to packets
sent 700 µs apart.

ning NIST Net, pass through the emulated network, and
are routed to a third server which measures the resulting
packet inter-arrival times. NIST Net is configured to add
100ms of delay to each packet. Although adding a delay to
every packet is a simple application of a network emulator,
by varying the input packet inter-arrival times, NIST Net’s
scheduler inaccuracy is clearly visible.

Figure 1 is a CDF of the measured intervals between packet
arrivals in NIST Net’s input and output traffic. To measure
the arrival times of the input traffic we temporarily connect
the generating server directly to the measuring server. Here
a packet is sent by the PTG to NIST Net, and thus should
depart from NIST Net, every 70µs. This interval is smaller
than the fixed timer interval used by NIST Net, which has a
period of 122µs [13], so NIST Net will either send the packet
immediately or in the next timer interval. Consequently, in
Figure 1, 40% of the packets are received back-to-back if we
consider that it takes just over 12µs to transmit a packet
of the given size on the wire (the transmission time of a
single packet is marked with a “T” on the x-axis). Very few
packets actually depart close to the correct 70µs interval
between them. Most of the remaining intervals are between
100µs and 140µs.

Even when the interval between arriving packets is larger
than NIST Net’s bucket size, the actual packet transmission
times are still incorrect. Figures 2 and 3 show the measured
arrival intervals for 640µs and 700µs arrivals, respectively.
Note that in both figures, most of the intervals are actually
either 610µs or 732µs, which are multiples of NIST Net’s
122µs bucket size. It is only possible for NIST Net to send
packets either back-to-back or with intervals that are mul-
tiples of 122µs. When we vary the inter-arrival time of the
input traffic between 610µs and 732µs, it only varies the
proportion of the output intervals that are either 610µs or
732µs.

The cause of the observed inaccuracies is not specific to
NIST Net’s implementation of a network emulator. Any
software that uses a fixed-size time interval to schedule packet

transmissions will suffer similar failures at small time scales,
and the generated traffic will not be suitable for experiments
that are sensitive to the exact inter-arrival times of packets.
The exact numbers will differ, depending on the length of
the fixed interval. To our knowledge, Modelnet [10] is the
software network emulator providing the finest scheduling
granularity of 100µs with a 10KHz timer. Although higher
resolution timers exist in Linux that can schedule a single
packet transmission relatively accurately, the combined in-
terrupt and CPU load of setting timers for every packet
transmission would overload the system. Therefore, our con-
clusion is that an all-software network emulator executing
on a general-purpose operating system requires additional
hardware support (such as the one we propose) to produce
realistic traffic at very small time scales.

3.3 Variable Packet Inter-arrival Times
Another advantage of PTG is its ability to generate packets
with an arbitrary sequence of inter-arrival times and sizes.
For example, Figure 4 shows the CDFs of both the requested
and the measured transmission times for an experiment with
4000 packets with inter-arrival times following a Pareto dis-
tribution. Interestingly, only a single curve is visible in the
figure since the two curves match entirely (for clarity we
add crosses to the figure at intervals along the input distri-
bution’s curve). This property of PTG is exactly the com-
ponent that the network emulators mentioned in Section 3.2
need. It can take a list of packets and transmission times
and send the packets when requested. The crucial differ-
ence between PTG and SPG is that SPG has a separate
load phase and could not be used by the network emulators.

As another example, Figure 5 shows the CDFs of the re-
quested and the measured transmission times when the re-
quested inter-arrival of packets follows the spike bump pat-
tern probability density function observed in the study on
packet inter-arrival times in the Internet by Katabi et al. [7].
Here 10000 packets are sent with packet sizes chosen from a
simple distribution: 50% are 1518 bytes, 10% are 612 bytes,
and 40% are 64 bytes. Note that, again, PTG generates
the traffic exactly as expected and hence only one curve is
visible.

4. DISCUSSION
In this section, we describe the limitations of PTG’s current
implementation. As PTG is intended to be integrated into
existing traffic generators and network emulators, we also
briefly describe a prototype we are developing that allows
packets from the popular network simulator ns-2 [9] to be
sent on a real network using PTG.

Limitations: The limitations of the PTG stem from copy-
ing packets between the host computer and the NetFPGA
over the 32 bit, 33 MHz PCI bus, which has a bandwidth of
approximately 1Gb/s. As explained in Section 2, the pay-
loads of packets sent by the PTG are usually all zeros, which
requires sending only the packet headers over the PCI bus.
This is sufficient for network experiments that do not in-
volve packet payloads. A larger body of experiments ignore
most of the packet payloads except for a minimal amount
of application-layer signaling between sender and receiver.
To support this, arbitrary custom data can be added to the
start of any packet payload. This additional data is copied

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
er

ce
nt

ag
e

Inter-arrival Time (µs)

Empirical CDF

Input
Output

Figure 4: CDF of measured inter-arrival times com-
pared with an input pareto distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000 12000 14000

P
er

ce
nt

ag
e

Inter-arrival Time (µs)

Empirical CDF

Input
Output

Figure 5: CDF of measured inter-arrival times com-
pared with an input distribution.

to the NetFPGA card and is included in the packet. In the
future, we plan to allow a number of predefined packet pay-
loads to be copied to the NetFPGA in a preprocessing phase.
These payloads could then be attached to outgoing packets
without the need to repeatedly copy them over the PCI bus.
We envision this feature would support many experiments
where multiple flows send packets with the same or similar
payloads.

The current PTG software implementation does not yet han-
dle received packets from the network. For experiments with
a high traffic volume, it would not be possible to transfer all
of the received packet payloads from the 4 Gigabit Ethernet
ports of the NetFPGA to the host computer over the PCI
bus. Only a fraction of the packets could be transfered or
the packets could be summarized by the NetFPGA.

Integration with ns-2: Because many researchers are al-
ready familiar with ns-2, this is a useful tool to test real net-

work devices together with simulated networks. Compared
to previous attempts to connect ns-2 to a real network [15],
the integration of PTG with ns-2 will enable generating real
packets with transmission times that match the ns-2 simu-
lated times even on very small time scales. For example, a
particular link in ns-2’s simulated network could be mapped
to a link on a physical network and when simulated packets
would arrive at this link, they would be given to the PTG
to be transmitted based on the requested simulated time.

5. CONCLUSION
Generating realistic traffic in network testbeds is challeng-
ing yet crucial for performing valid experiments. Software
network emulators schedule packet transmission times in
software, hence incurring unavoidable inaccuracy for inter-
transmission intervals in the sub-millisecond range. Thus,
they are insufficient for experiments sensitive to the inter-
arrival times of packets. In this paper we present NetFPGA-
based Precise Traffic Generator (PTG) built on top of the
NetThreads platform. NetThreads allows network devices
to be quickly developed for the NetFPGA card in software
while still taking advantage of the hardware’s low-level tim-
ing guarantees. The PTG allows packets generated on the
host computer to be sent with extremely accurate inter-
transmission times and it is designed to integrate with ex-
isting software traffic generators and network emulators. A
network emulator that uses PTG to transmit packets can
generate traffic that is realistic at all time scales, allowing
researchers to perform experiments that were previously in-
feasible.

Acknowledgments
This work was supported by NSERC Discovery, NSERC RTI
as well as a grant from Cisco Systems.

6. REFERENCES
[1] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown,

and G. Salmon, “Experimental study of router buffer
sizing,” in IMC’08: Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, 2008.

[2] K. V. Vishwanath and A. Vahdat, “Realistic and
responsive network traffic generation,” in
SIGCOMM’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols
for computer communications, 2006.

[3] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown,
J. Naous, and G. Salmon, “Performing time-sensitive
network experiments,” in ANCS’08: Proceedings of the
4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, 2008.

[4] R. Prasad, C. Dovrolis, and M. Thottan., “Evaluation
of Avalanche traffic generator,” 2007.

[5] A. Rupp, H. Dreger, A. Feldmann, and R. Sommer,
“Packet trace manipulation framework for test labs,”
in IMC’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, 2004.

[6] G. A. Covington, G. Gibb, J. Lockwood, and
N. McKeown, “A packet generator on the NetFPGA
platform,” in FCCM’09: Proceedings of the 17th
annual IEEE symposium on field-programmable
custom computing machines, 2009.

[7] D. Katabi and C. Blake, “Inferring congestion sharing
and path characteristics from packet interarrival
times,” Tech. Rep., 2001.

[8] M. Labrecque, J. G. Steffan, G. Salmon, M. Ghobadi,
and Y. Ganjali, “NetThreads: Programming
NetFPGA with threaded software,” in NetFPGA
Developers Workshop’09, submitted.

[9] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker, “Scalability and
accuracy in a large-scale network emulator,” SIGOPS
Operating Systems Review archive, vol. 36, no. SI, pp.
271–284, 2002.

[11] M. Labrecque, P. Yiannacouras, and J. G. Steffan,
“Scaling soft processor systems,” in FCCM’08:

Proceedings of the 16th annual IEEE symposium on
field-programmable custom computing machines, April
2008.

[12] J. Sommers and P. Barford, “Self-configuring network
traffic generation,” in IMC’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet
measurement, 2004.

[13] M. Carson and D. Santay, “NIST Net: a Linux-based
network emulation tool,” SIGCOMM Computer
Communication Review, vol. 33, no. 3, pp. 111–126,
2003.

[14] Dummynet.
http://info.iet.unipi.it/ luigi/ip dummynet/.

[15] “Network emulation in the Vint/NS simulator,” in
ISCC’99: Proceedings of the The 4th IEEE Symposium
on Computers and Communications, 1999, p. 244.

AirFPGA: A Software Defined Radio platform based on
NetFPGA

Hongyi Zeng, John W. Lockwood
G. Adam Covington

Computer Systems Laboratory
Stanford University
Stanford, CA, USA

{hyzeng, jwlockwd,
gcoving}@stanford.edu

Alexander Tudor
Agilent Labs

Santa Clara, CA, USA
alex_tudor@agilent.com

ABSTRACT
This paper introduces AirFPGA, a scalable, high-speed, re-
mote controlled software defined radio (SDR) platform im-
plemented using a NetFPGA board, a digitizer and a Radio
Frequency (RF) receiver.

The AirFPGA is a system built on the NetFPGA that
allows baseband recording and playback of wireless signals,
as well as distributed processing. It captures radio signals,
processes them in reconfigurable hardware, and sends the
data via high speed Gigabit Ethernet to PCs or other NetF-
PGAs for additional computations. This paper describes the
system architecture, data path, testbed implementation and
test results. The paper demonstrates the system’s verifica-
tion using a signal generator. It also describes an application
consisting of monitoring a commercial AM station.

1. INTRODUCTION
Software Defined Radio (SDR), which replaces typical hard-

ware components of a radio system with personal computer
software or other embedded computing devices, becomes a
critical technology for both wireless service providers and re-
searchers. A basic SDR may consist of a computer equipped
with an analog-to-digital converter, preceded by RF front
end. Large part of signal processing are on the general pur-
pose processor, rather than special purpose hardware. It
produces a radio that can operate a different form of radio
protocol by just running different software.

Traditionally, SDRs combine data acquisition (RF an-
tenna with analog-to-digital converter) and signal processing
(CPU, FPGA, DSP, etc.) on the same device. This design
will limit the scale of data acquisition units and strain com-
puting capacity due to space and power availability.

For example, a multiple antenna system exploits spacial
diversity to allows signals received from multiple antennas
to be collected. Existing MIMO systems process signals on
multiple antennas that are attached to the host device (e.g.
a wireless router) at the same place. These antennas may
suffer similar channel fading. Separating antennas from the
host device, and combining waveforms collected by antennas
at different locations can make the system stabler.

Some “computing intensive” applications, e.g. HDTV, ra-
dio astronomy telescope, and satellite receivers, also require
decoupling the location of the signal processing from the
antenna element. These applications often needs more com-
puting resources than a single processing unit (FPGA/CPU),

could provide. The antenna location often does not have the
room and the power for a super computing facility. System
designers may want to make use of a remote computing clus-
ter, while maintaining the positions of antenna.

In conclusion, it is desirable that data acquisition and
processing be performed separately in some SDR systems.
AirFPGA is a SDR system that is designed for remote pro-
cessing. It consists the NetFPGA card as radio to network
interface, an RF receiver, and a digitizer. The base AirF-
PGA system can capture radio signals from RF receiver,
packetize the data into UDP packets, and transmit it over
NetFPGA’s 4 Gigabit Ethernet ports. Developers can fur-
ther reconfigure circuits to add in local DSP units according
to the targeting application. These blocks may, for exam-
ple, be downconverter, resampler, and various filters. These
units are lightweight and mostly for data reduction/com-
pression to meet the network constraints. AirFPGA can
then be connected to one or more “master” signal processing
nodes as long as they support UDP/IP stack.

2. SYSTEM ARCHITECTURE
The AirFPGA enables the construction of a signal pro-

cessing network distributed platform consisting of NetFP-
GAs, PCs and other computing devices. The architecture
consists of four parts: receiver and digitizer (A/D converter)
integrated into a single device, the NetFPGA card, the ra-
dio server, and radio clients. This is shown in Figure 1.
The Radio Frequency (RF) signal received by the antenna
is down-converted, digitized to IQ pairs and transferred to
the NetFPGA card. The NetFPGA packetizes the received
data and sends it over Gigabit Ethernet. On the other side
of the network radio clients receive the packets for further
processing.

2.1 NetFPGA
The NetFPGA card [1, 2] is the core of the AirFPGA

system. It is a network hardware accelerator that augments
the function of a standard computer. The card has four
Gigabit Ethernet ports, Static RAM (SRAM) and Dynamic
RAM (DRAM). The NetFPGA attaches to the Peripheral
Communication Interconnect (PCI) bus on a PC. A Xilinx
Virtex-II Pro FPGA on the NetFPGA performs all media
access control (MAC) and network layer functions.

2.2 Radio Server

����������������
����������������
����������������

�������

�����	�

���
�������

���
��������

	���������������
�����
�������

Figure 1: AirFPGA System Architecture

The radio server PC hosts the NetFPGA card. The pack-
etization and forwarding are all accomplished on the FPGA.

A USB cable connects the radio [3] to the PC in which the
NetFPGA card is installed. The radio server first reads data
from the radio via USB cable, then loads it to NetFPGA’s
SRAM using the memory access tool provided by NetFPGA
gateware. NetFPGA can then treat the data as though it
was directly acquired from the radio, which is what we ex-
pect to accomplish in the next generation of this system.
Further details will be given in Section 4.2.

2.3 Radio Client
The radio client is the receiver of packets generated by

the NetFPGA card on the radio server PC. A radio client
is a PC with or without a NetFPGA card. It can also be
another NetFPGA card in a serial signal processing chain,
or another device that has a large amount of Digital Signal
Processing (DSP) resources, such as the ROACH [4].

3. FEATURES
The AirFPGA has the functionality that enables its novel

use as a network distributed signal processing platform.

3.1 Scalability
The NetFPGA card has 4 Gigabit Ethernet ports. Sev-

eral clients may participate in the computation needed for
signal processing. Signals buffered by the NetFPGA card
can be sent through Gigabit Ethernet to devices that have
processing resources. In this case, which is the system’s cur-
rent implementation, NetFPGA is a data transport device.
Other processing topologies of this “DSP Network” can be
envisioned.

3.2 High speed
The AirFPGA’s current design uses a single NetFPGA

Gigabit Ethernet port. Up to 190kHz baseband bandwidth
can be captured and streamed by the radio. Even though
the onboard ADC samples 14bits at 66MS/s, the data is dec-
imated according to the chosen narrow-band demodulation
in order to fit the USB connection’s 400Mb/s speed. Fu-
ture work will use all four Gigabit Ethernet ports to enable
wide-band modulations and MIMO.

Xilinx Virtex II Pro is suitable for processing narrow-band
signals; its use for partial processing for wide-band is the
subject of further investigation. For that purpose, Xilinx’s
DSP IP cores (e.g. numerically controlled oscillators (NCO),
mixers, filters, FIFOs, etc.) will be considered.

3.3 Remote Controlled
AirFPGA separates data acquisition and signal process-

ing. Radio clients and the radio server are logically and
physically separated. You can listen to an AM radio far
away from your town by deploying a radio server there. With
more bandwidth you can watch HDTV received on your roof
when you are abroad, or you can monitor the electromag-
netic environment in a particular region.

4. IMPLEMENTATION

4.1 Reference Pipeline
The original reference pipeline of NetFPGA, as shown in

Figure 2, is comprised of eight receive queues, eight transmit
queues, and the user data path. The receive and transmit
queues are divided into two types: MAC and CPU. The
MAC queues are assigned to one of the four interfaces on
the NetFPGA, and there is one CPU queue associated with
each of the MAC queues.

Output Port Lookup

MAC
RxQ

MAC
RxQ

MAC
RxQ

MAC
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

User Data Path

Input Arbiter

Output Queues

PCI
HOST

SRAM
Interface

DRAM
Interface

Register
I/O

GigE
RX

GigE
RX

GigE
RX

GigE
RX

GigE
TX

GigE
TX

GigE
TX

GigE
TX

PCI
HOST

Figure 2: NetFPGA Reference Pipeline

Users add and connect their modules to the User Data
Path. The Input Arbiter and the Output Queues modules
are present in almost all NetFPGA designs. The source
code for these modules are provided in the NetFPGA Ver-
ilog library [5]. The Input Arbiter services the eight input
queues in a round robin fashion to feed a wide (64 bit) packet
pipeline.

The register system allows software to read and write the
contexts of key registers, counters and the contents of SRAM
from the host PC. The architecture allows modules to be in-
serted into the pipeline with minimal effort. The register
interface allows software programs running on the host sys-
tem to send data to and receive data from the hardware
modules.

4.2 AirFPGA Data Path
The User Data Path of the AirFPGA is shown in Figure

3. We remove all of 8 input queues, the input arbiter, and
output queue lookup module, since NetFPGA is served as a
transport an data acquisition device in the current architec-
ture.

We are investigating additional NetFPGA functionality
consisting of the radio control interface and possibly a PHY
(physical layer decoder) and a PHY FEC (Forward Error
Correction). The radio output is baseband IQ pairs or real

CTRL NetFPGA 64bit Data Path
- Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31 Bits 32-39 Bits 40-47 Bits 48-55 Bits 56-63

0xFF port dst 16 word length 16 port src 16 byte length 16
0x00 mac dst 48 mac src hi 16

0x00 mac src lo 32 mac ethertype 16
ip version 4 +

ip header length 4
ip ToS 8

0x00 ip total length 16 ip id 16
ip flags 3 +

ip flag offset 13
ip TTL 8 ip prot 8

0x00 ip header checksum 16 ip src 32 ip dst hi 16
0x00 ip dst lo 16 udp src 16 udp dst 16 udp length 16
0x00 udp checksum 16 airfpga reserved 16 airfpga seq num 32
0x00 IQ 32 IQ 32
0x00 IQ 32 IQ 32
0x00 · · · · · ·
0x01 IQ 32 IQ 32

Table 1: Packet Format of AirFPGA

DSP M
odules

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

User Data Path

Radio Interface

Packet G
enerator

Radio

DSP Simulator

PCI
HOST

SRAM
Interface

Register
I/O

Figure 3: AirFPGA data path. The envisioned path
is shown in dotted lines, through the radio interface
and DSP modules. The current path is through the
DSP simulator that feeds the packet generator with
“DSP results” directly from SRAM.

numbers. Depending on how much processing takes place on
the NetFPGA, IQ pairs, demodulated and decoded signals,
or even MAC bits are packetized according to the packet
format described in Section 4.3, and sent out the Gigabit
Ethernet port(s). Only IQ pairs are now packetized.

The above describes a theoretical data path, still under
investigation. The current AirFPGA implementation uses
an alternative data path to circumvent the radio interface
and DSP modules, while preserving the overall architecture.
The radio server PC loads the radio signals to the NetF-
PGA’s SRAM. The DSP simulator module reads the data
from SRAM and feeds it to the packet generator as “DSP
results”. The remaining part of data path is the same as the
previous path.

Radio clients receive packets using standard UDP/IP net-
work sockets.

4.3 Packet Format

The NetFPGA data width is 64 bits, along with 8 bit
control (CTRL) signals. Table 1 shows the packet format
using for packetizing process. We choose UDP as transport
layer protocol to achieve highest throughput and reduce the
complexity of state machine design. Our applications are
tolerant with potential packet loss with UDP flow. In UDP
payload, we reserved first 16 bits for storing information
used by the AirFPGA software, such as central frequency,
power, antenna status, and data width. A 32 bit sequence
number is embedded to maintain the order of packets and
discover packet loss.

The headers from top down are: IOQ module headers
defined in reference design for NetFPGA to route the packet
correctly, IEEE 802.3 ethernet MAC header, IPv4 header,
UDP header, AirFPGA header (reserved bits and sequence
number). The AirFPGA payload consists a serial of 32 bit
IQ data, where 16 bit I (in-phase) is preceded by 16 bit Q
(quadrature).

4.4 Registers
The NetFPGA register interface exposes hardware’s regis-

ters, counters and tables to the software and allows software
to modify them. [6] This is achieved by memory-mapping
the internal hardware registers. The memory-mapped reg-
isters appear as I/O registers to software. The software can
then access the registers using ioctl calls.

The AirFPGA employs 11 main registers to realize run-
time parameters modification and DSP simulator control-
ling. They are listed in Table 2.

5. TESTBED AND RESULTS
We have implemented AirFPGA on the NetFPGA board

and built a testbed for verification. The architecture of the
testbed is shown in Figure 5.

The AirFPGA testbed receives signals from an antenna or
a signal generator. The receiver, an HF (30MHz) direct dig-
ital down-converter, can continuously stream up to 190kHz
of spectrum. The product, called SDR-IQ, is manufactured
by RFSpace Inc. The signal generator outputs an AM mod-
ulated RF signal. An antenna can also feed the SDR-IQ.
The SDR-IQ down-converts the RF signal, digitizes it and
converts it to IQ pairs. The samples are then sent to the
radio server via USB. The radio server loads the IQ pairs
to the NetFPGA’s SRAM via the PCI interface. NetFPGA

Figure 4: 10kHz single tone AM at carrier frequency 1.4MHz. 3 main spectrum are shown on the waterfall:
carrier at 1.4MHz, sidebands at 1.39MHz and 1.41MHz. The spectrum are shown on Linrad 1 (left) and
Linrad 2 (right).

Register Name Description
Packet Parameters

AIRFPGA MAC SRC HI High 16 bits:source MAC
AIRFPGA MAC SRC LO Low 32 bits:source MAC
AIRFPGA MAC DST HI High 16 bits:dest. MAC
AIRFPGA MAC DST LO Low 32 bits:dest. MAC
AIRFPGA IP SRC Source IP
AIRFPGA IP DST Destination IP
AIRFPGA UDP SRC Source UDP port
AIRFPGA UDP DST Destination UDP port

DSP Simulator Control
AIRFPGA SIM ADDR LO Start addr of SRAM
AIRFPGA SIM ADDR HI End addr of SRAM
AIRFPGA SIM ENABLE Enable DSP Simulator

Table 2: Registers for AirFPGA

packetizes and sends them over the Gigabit Ethernet.

5.1 SDR-IQ
SDR-IQ [3] (Figure 6) converts the RF signal into IQ

pairs. It features a 14 bits analog to digital converter. The
device is supported by several platforms, for either Windows
or Linux, as a front end for spectrum analysis and dozens
narrowband modulations, both analog and digital.

The hardware directly converts 30MHz to IQ pairs using
a direct digital converter (DDC) chip from Analog Devices
(AD6620) running at 66.6MHz.

The SDR-IQ comes with an HF amplified front-end with
switched attenuators, switched filters and 1Hz tuning.

5.2 Linrad
The testbed has two Linrad’s [7] running on the server

and client side. Linrad is a software spectrum analyzer and
demodulator running under Linux (as well as Microsoft Win-
dows). For signal integrity verification we compare the dis-
played spectrum between two Linrad(s) as shown in Section
5.3.

Linrad operates with any sound card when audible mod-

������������������
������������������
������������������
������������������
������������������
������������������

����������������
����������������

��������	�	
���
 �
���� �������	
�	

�	�����

���������	��

���
����

���
����

���	���

�����������	
�	�

Figure 5: AirFPGA Testbed

Figure 6: SDR-IQ

ulations are used. Linrad supports the SDR-IQ and other
hardware platforms.

The Linrad DSP software is independent of the hardware.
It can process any bandwidth produced by the hardware
subject to the computing resources of the PC on which Lin-
rad is running. Linrad has a general purpose architecture
and can be seen as a receiver design kit.

5.3 Signal Generator + SDR-IQ + AirFPGA

In the first scenario, we connect an Agilent E8267D PSG
Vector Signal Generator to the SDR-IQ. It generates ana-
log (AM, FM) and digital (ASK, FSK, MSK, PSK, QAM)
modulated signals.

Figure 4 shows how a single tone AM signal looks like
on Linrad’s running at the radio server (left) and the ra-
dio client (right). The upper half of Linrad is the wideband
waterfall and spectrum. The carrier is at 1.4MHz and two
modulating sidebands are on 1.39MHz and 1.41MHz respec-
tively. The baseband waterfall and spectrum is on the lower
part.

Figure 7: 1kHz single tone (β = 10) Wideband FM
signal at carrier frequency 1.4 MHz shown on client
side Linrad. Several spectrum spaced by 1kHz.

Figure 7 shows how an FM signal looks like on client side
Linrad. It is a 1kHz single tone signal at carrier frequency
1.4MHz. We can see several spectrum spaced by 1kHz with
magnitude of n-order modified Bessel function evaluated at
β = 10.

5.4 Antenna + SDR-IQ + AirFPGA
In this scenario an AM antenna is connected to the SDR-

IQ. Due to the limitation of SDR-IQ (30MHz), we are only
able to receive commercial AM stations (520kHz-1,610kHz).

The AM antenna is a thin wire plugged into the RF input
jack of the SDR-IQ.

Figure 8 shows the spectrum of a local AM station (KLIV
1590kHz) in Bay Area. Linrad is able to demodulate the
received AM signal and send the waveform to the sound
card. We can listen to this station either at the server side
or the client side.

A demonstration video is available online[8].

6. DEVICE UTILIZATION
Table 3 describes the device utilization of AirFPGA. AirF-

PGA uses 38% of the available slices on the Xilinx Virtex
II Pro 50 FPGA. The largest use of the slices are from the
packet generator that packetizes DSP results into IP pack-
ets. 19% of the block RAMs available are used. The main
use of block RAMs occurs in the FIFOs used between the
modules and the main input and output queues of the sys-
tem.

XC2VP50 Utilization
Resources Utilization Percentage

Slices 9,210 out of 23,616 38%
4-input LUTS 10,204 out of 47,232 23%

Flip Flops 9,148 out of 47,232 19%
Block RAMs 46 out of 232 19%

External IOBs 356 out of 692 51%

Table 3: Device utilization for AirFPGA

7. RELATED WORK
The AirFPGA is not the first system designed for SDR.

There are a number of popular platforms for the amateur
radio community, such as SDR1000 from FlexRadio Sys-
tems [9], Softrock40 from American QRP [10]. These com-
mercial platforms have no open source design, thus are dif-
ficult to modify by users.

The HPSDR [11] is an open source hardware and software
SDR project for use by Radio Amateurs (”hams”) and Short
Wave Listeners (SWLs). It is being designed and developed
by a group of SDR enthusiasts with representation from in-
terested experimenters worldwide. The discussion list mem-
bership currently stands at around 750 and includes such
SDR enthusiasts. However, HPSDR is designed for radio-
amateur analog and digital communications.

GNU Radio [12] is a free software development toolkit
that provides the signal processing runtime and processing
blocks to implement software radios using readily-available,
low-cost external RF hardware and commodity processors.
It is widely used in hobbyist, academic and commercial en-
vironments to support wireless communications research as
well as to implement real-world radio systems.

Rice University’s WARP [13, 14, 15] is a scalable, ex-
tensible and programmable wireless platform to prototype
wireless networks. The open-access WARP repository al-
lows exchange and sharing of new physical and network layer
architectures, building a true community platform. Xilinx
FPGAs are used to enable programmability of both physical
and network layer protocols on a single platform, which is
both deployable and observable at all layers.

These two systems are designed for future digital wireless
research, and popular in the academic world. GNU Radio
and WARP both rely on centralized digital signal processing
in one chip, thus lacking scalability.

Some platforms, although not designed for SDR, provide
superior computing ability that can be used in SDR process-
ing. UC Berkeley’s BEE2 and ROACH are two examples.
These boards can serve as radio clients in the AirFPGA ar-
chitecture.

The BEE2 board [16] was originally designed for high-end
reconfigurable computing applications such as ASIC design.
It has 500 Gops/sec of computational power provided by 5
Xilinx XC2VP70 Virtex-II Pro FPGAs. Each FPGA con-
nects to 4GB of DDR2-SDRAM, and all FPGAs share a
100Mbps Ethernet port.

The ROACH board [4] is intended as a replacement for
BEE2 boards. A single Xilinx Virtex-5 XC5VSX95T FPGA
provides 400 Gops/sec of processing power and is connected
to a separate PowerPC 440EPx processor with a 1 Gigabit
Ethernet connection. The board contains 4GB of DDR2
DRAM and two 36Mbit QDR SRAMs.

Figure 8: KLIV (1590kHz) spectrum on AirFPGA

8. FUTURE WORK

8.1 Multicast
The current implementation supports multicast IP ad-

dress [17]. The destination IP address can be specified as a
224.x.y.z multicast IP address. Another solution is to im-
plement 4 unicast UDP connection at the same time. The
NetFPGA card has 4 Gigabit Ethernet ports. The addi-
tional ports could allow packets to be delivered to more than
one port if there are multiple recipients of the data, each at
a unique destination IP address. Four copies of each packet
can be sent. They are different only in the destination IP
address and the corresponding next-hop MAC address. The
MAC address can be determined by ARP protocol, which
has been implemented in the NetFPGA reference router.

8.2 Radio Daughterboard
We are developing a radio daughterboard and interface

module that connects the radio directly to the NetFPGA.
The daughterboard is the physical interface between the ra-
dio (consisting of RF front-end and analog to digital con-
verter) and NetFPGA. Data is transmitted from the ra-
dio to the NetFPGA card through the daughterboard, and
NetFPGA controls the radio through the same interface.
The NetFPGA card provides several General Purpose Input-
Output (GPIO) pins, which are suitable for interfacing with
the daughterboard.

8.3 DSP Modules
We have not yet implemented any DSP modules on the

NetFPGA. For the next stage we are investigating partial

PHY processing of wide-band signals on the NetFPGA in
order to reduce the transmitted data rate.

9. CONCLUSION
The AirFPGA is a network based SDR platform that

performs distributed signal processing over high speed Eth-
ernet. It is a novel server-client architecture designed for
complex digital signal processing in wireless communication.
The radio on the server side can be remotely controlled and
the data it captures can be sent through Gigabit Ethernet
to remote machines. The prototype of AirFPGA has been
implemented on NetFPGA along with SDR-IQ and Linrad
for capturing and displaying of analog modulations. Future
versions of AirFPGA will include multicast, a radio daugh-
terboard, and local digital signal processing, etc. Further in-
formation and demonstration on the AirFPGA can be found
on AirFPGA’s website. [8]

10. REFERENCES
[1] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and

N. McKeown, “NetFPGA: an open platform for
teaching how to build gigabit-rate network switches
and routers,” IEEE Transactions on Education,
vol. 51, no. 3, pp. 364–369, Aug. 2008.

[2] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo,
“NetFPGA–an open platform for gigabit-rate network
switching and routing,” in Microelectronic Systems
Education, 2007. MSE ’07. IEEE International
Conference on, San Diego, CA, June 2007, pp.
160–161.

[3] Rfspace Inc., “SDR-IQ Receiver,”
http://www.rfspace.com/SDR-IQ.html.

[4] ROACH Group, “ROACH Homepage,”
http://casper.berkeley.edu/.

[5] NetFPGA Team, “NetFPGA website,”
http://netfpga.org/.

[6] G. A. Covington, G. Gibb, J. Naous, J. Lockwood,
and N. McKeown, “Methodology to contribute
NetFPGA modules,” in International Conference on
Microelectronic Systems Education (submitted to),
2009.

[7] Leif Asbrink, SM5BSZ, “Linrad Website,”
http://www.sm5bsz.com/linuxdsp/linrad.htm.

[8] AirFPGA Group, “AirFPGA Homepage,”
http://www.netfpga.org/airfpga.

[9] FlexRadio Systems, “FlexRadio Website,”
http://www.flex-radio.com/.

[10] “SoftRock-40,”
http://www.amqrp.org/kits/softrock40/.

[11] HPSDR, “High Performance Software Defined Radio,”
http://hpsdr.org/.

[12] GNU Radio Group, “GNU Radio Website,”
http://www.gnu.org/software/gnuradio/.

[13] WARP Group, “WARP Website,”
http://warp.rice.edu.

[14] P. Murphy, A. Sabharwal, and B. Aazhang, “Design of
WARP: a wireless open-access research platform,” in
EURASIP XIV European Signal Processing
Conference, September 2006.

[15] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R.
Cavallaro, and A. Sabharwal, “WARP, a unified
wireless network testbed for education and research,”
in Microelectronic Systems Education, 2007. MSE ’07.
IEEE International Conference on, San Diego, CA,
June 2007, pp. 53–54.

[16] C. Chang, J. Wawrzynek, and R. W. Brodersen,
“BEE2: a high-end reconfigurable computing system,”
IEEE Design & Test of Computers, vol. 22, no. 2, pp.
114–125, Mar./Apr. 2005.

[17] S. Deering, “Host extensions for IP multicasting,”
Internet Engineering Task Force, RFC 1112, Aug.
1989. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1112.txt

Fast Reroute and Multipath Routing Extensions to the
NetFPGA Reference Router

Hongyi Zeng, Mario Flajslik, Nikhil Handigol
Department of Electrical Engineering and Department of Computer Science

Stanford University
Stanford, CA, USA

{hyzeng, mariof, nikhilh}@stanford.edu

ABSTRACT
This paper describes the design and implementation of two
feature extensions to the NetFPGA reference router - fast
reroute and multipath routing. We also share our insight
into the inherent similarities of these two seemingly dis-
parate features that enable us to run them simultaneously.
Both features are designed to work at line-rate. With min-
imum modification of both hardware and software, the ad-
vanced features are tested and will be demonstrated on the
NetFPGA card.

1. INTRODUCTION
One of the many systems built using NetFPGA is an IPv4

reference router [1]. The router runs the Pee-Wee OSPF [2]
routing protocol, and does address lookup and packet for-
warding at line-rate.

In this paper, we present two feature extensions to the
NetFPGA reference router:

• Fast reroute - Detection of link failure or topology
change in the reference router is generally based on
the OSPF messages timing out. However, this causes
packets to be dropped in the interval between the ac-
tual failure and failure detection. These intervals are
as large as 90 seconds in PW-OSPF. Fast reroute [3]
is a technique that detects link failures at the hard-
ware level and routes packets over alternative routes
to minimize packet drops. These alternative routes
are pre-computed by the router software.

• Multipath routing - Multipath routing [4] is a routing
strategy where next-hop packet forwarding to a single
destination can occur over multiple “best paths”. This
enables load-balancing and better utilization of avail-
able network capacity. Our implementation of mul-
tipath routing is similar to ECMP; packets are for-
warded over only those paths that tie for top place
in routing metric calculations. This has the two-fold
advantage of keeping the routing protocol simple and
robust as well as minimizing packet reordering.

This work was originally intended as an advanced feature
project for CS344“Building an Internet Router” class, in the
year 2009 at Stanford University.

2. DESIGN
The main goal of CS344 class is to design an output port

lookup module for the NetFPGA. This module takes incom-
ing packets, parses header information, queries the routing

table and ARP cache, labels the packet with output port in-
formation, and finally puts it in output queues. Along with
other modules in NetFPGA gateware, a functional Internet
router can be built.

2.1 Architecture
The overall architecture of output port lookup module is

shown in Figure 1.

Figure 1: Block Diagram of Output Port Lookup

The scheduler provides “position” information to other
modules. This simplifies the design of header parser and
TTL/Checksum. The header parser parses the header of
packets, and TTL/Checksum module manipulates TTL/Check-
sum information of IP packets.

There are three table lookup modules for ARP table, IP
filter table, and routing table. The first two have similar
lookup mechanism, while routing table lookup should be
Longest Prefix Matching (LPM). In general, these modules
accept a search key and a REQ signal, feed back an ACK
signal with the results. On the other side, these modules
connect to the Block RAM (BRAM) interface provided by
Xilinx. Table entries are stored in BRAM.

The main state machine reads in the entire header to a
FIFO. At the same time header parser and ttl checksum pre-
pares the necessary information to the state machine. If the
packet is a regular IP packet, the state machine issues a IP
filter search request. If the address is found in the IP filter
table, the packet will be kicked up to software. Otherwise,

the state machine does a routing table search, and a ARP
search. In the last stage, the state machine modifies the
MAC header, TTL, and checksum, and sends the packet to
the destination port.

The extension code to support fast reroute and multipath
routing is mainly in the routing table and lpm lookup mod-
ule. We will describe the two new features in the following
subsections. Before that, the routing table structure and
LPM lookup process will be presented.

2.2 Routing Table and LPM Lookup

2.2.1 Routing Table
Each entry of the routing table consists four parts: IP ad-

dress as search key, the mask, next-hop IP, and port. The
port information is stored as a one-hot-encoded number.
This number has a one for every port the packet should go
out on where bit 0 is MAC0, bit 1 is CPU0, bit 2 is MAC1,
etc. The structure of the entry is depicted in Table 1.

Search IP Mask Next-hop IP Port
192.168.100.0 255.255.255.0 192.168.101.2 0000 0001

Table 1: Entry Structure of the Routing Table

2.2.2 LPM Lookup
Due to the course requirement, we did not use the Xilinx

Ternary Content Addressable Memory (TCAM) cores[5, 6].
Instead, we implement the routing table with BRAM on the
NetFPGA card. Linear search is employed in LPM lookup
as the size of the routing table is relatively small (32 entries
required by the class). The entries with longer prefix are
stored in front of those with shorter prefix. By doing this,
entries with longest prefix will naturally come out first in a
linear search.

2.3 Fast Reroute
In order to realize fast reroute feature, the router soft-

ware needs to store a backup path for those ”fast reroute
protected” entry. In our router, the backup path informa-
tion is in the form of duplicate entries only with different
port information. In the normal case, the lpm lookup mod-
ule will return the first matched entry to the main state
machine, making the port in this entry having the highest
priority. When the port in the primary entry fails, the sec-
ond entry with backup port information will be used and
the flow will be rerouted. Table 2 is an example.

Search IP Mask Next-hop IP Port
1 192.168.100.0 255.255.255.0 192.168.101.2 0000 0001
2 192.168.100.0 255.255.255.0 192.168.101.2 0000 0100

Table 2: Fast Reroute entries. The primary port is
MAC0. The backup port is MAC1

The reroute procedure is very fast because it is purely
based on hardware. We make use of in-band link status
information from Broadcom PHY chips as feedback. Once
a link is down, lpm lookup module will notice this imme-
diately. The next coming packet will not follow the entry
with invalid output port. Further details on in-band sta-
tus information of NetFPGA’s PHY chip can be found in
Broadcom’s BCM5464SR data sheet[7].

Besides link status feedback, the router hardware needs
no modification under a linear search scheme. However, the
duplicate entries will take up extra space in the routing ta-
ble. At the same time, it is not applicable to TCAM based
lookup mechanism, in which entries are not stored in order.
Our solution is to extend port information section in the
entry from 8bit to 16bit. The first 8bit is the primary port
while the following 8bit is the backup. The primary port
will be used first unless the associated link is down.

2.4 Multipath Routing
In the NetFPGA reference router, a routing table entry

with multiple 1’s in port section indicates itself as a multi-
cast entry. Packets match this entry are sent to those ports
at the same time. Based on the fact that in the current
OSPF routing protocol, a packet is never sent to more than
one port, we decided to take advantage of this section to
implement multipath routing.

The goal of multipath routing is to allow packets destined
to the same end-host making use of more than one route.
In our multipath routing implementation, each entry in the
routing table may have more than one output port, with
multiple 1’s in port section. Packets matching this entry
could go to any port indicated in the entry. Note that for
multipath entry, each output port will have its correspon-
dent next-hop IP (gateway). We created another gateway
table to store the gateway address. In routing table, we store
a 8bit pointer (index) for each output port that can be used.
Currently we use a simple round-robin fashion to choose the
actual output port. A register keeps track of which port
was last used and instructs lpm lookup module to find the
next available port. A multipath entry and gateway table
example is shown in Table 3.

Search IP Mask Next-hop IP index Port
192.168.100.0 255.255.255.0 02 00 00 01 0100 0001

Index Next-hop IP
1 192.168.101.2
2 192.168.102.3

Table 3: Multipath entry. Packets use MAC0,
MAC3 in turns.

We do not specify the priority of ports in the same en-
try. Each port, if available, will be used with equal prob-
ability. However, priority can still be realized by ordered
duplicate entries described in the last section. One may op-
timize bandwidth, delay, quality of service, etc. by choosing
the output port cleverly.

It is worth to point out that, unlike fast reroute, the mul-
tipath routing implementation is independent of how entries
are stored. The same code applies to TCAM based router.

2.5 Limitation
We understand that there are a number of limitation in

the design.
First, for fast reroute feature, the only feedback informa-

tion is the link status. However, when the neighbor router
goes down or freezes, sometimes the link status may remain
active. In this case, it will not trigger the fast rerouting
mechanism, and the application is subject to interruption.
By design, our implementation is a hardware based improve-
ment to the current OSPF protocol. With the software, the

topology is still recalculated regularly to overcome the router
failures not resulting an inactive link state.

Another limitation of the design is packet reordering. We
split a single flow into multiple paths without packet re-
ordering protection. Packets could arrive at the destination
in different order as they are sent. As the hardware router
providing an interface to handle multipath routing, the soft-
ware (multipath routing protocol, transport layer protocol
such as TCP, or applications) may develop some methods
to ensure the quality of service.

3. IMPLEMENTATION

3.1 Hardware
Fast reroute and multipath routing features have already

been implemented in the hardware with linear search based
implementation. The corresponding Verilog code is less than
100 lines.

In general, the two advanced features consume little logics
in FPGA. However, duplicate entries for fast reroute may
need more BRAMs to store. Table 4 describes the device
utilization of out project. It uses 31% of the available flip-
flops on the Xilinx Virtex II Pro 50 FPGA, which is almost
equal to the reference router. 50% of the BRAMs available
are used. The main use of BRAMs occurs in the three tables.

XC2VP50 Utilization
Resources Utilization Percentage

Occupied Slices 14,781 out of 23,616 62%
4-input LUTS 17,469 out of 47,232 36%

Flip Flops 14,918 out of 47,232 31%
Block RAMs 118 out of 232 50%

External IOBs 356 out of 692 51%

Table 4: Device utilization for Fast Reroute and
Multipath Routing enabled Router

3.2 Software
Software is responsible for providing correct tables to the

hardware. Fast reroute and multipath routing features re-
quire changes only to the routing table. In the basic router
implementation the Routing Table is generated using Di-
jkstra’s algorithm to find shortest path to all known des-
tinations. This calculation is done whenever the topology
changes, as perceived by the router in question. To support
fast reroute and multipath routing, it is not sufficient to find
shortest paths to all destinations, but also second shortest
(and possibly third shortest and more) paths are also neces-
sary. This is calculated by running Dijkstra’s algorithm four
times (because NetFPGA has four interfaces). For each run
of the algorithm, all interfaces on the router are disabled,
except for one (a different interface is enabled in each run).
Resulting hop count distances (i.e. the distance vectors) for
each of the algorithm runs are then compared to provide the
routing table.

3.2.1 Fast Reroute
When fast reroute feature is enabled, two entries for each

destination will be added to the routing table if the desti-
nation can be reached over at least two interfaces. The first
entry corresponds to the shortest path route and is preferred,
and the second entry is the backup path if the primary path

is disabled. The router will be in the mode where it uses a
backup path only for the short time that it will take OSPF to
update all routers. After that, the backup path will become
the primary path, and a new backup path will be calculated
(if available). Because of this, adding a second backup path,
while possible, is deemed unnecessary. Also, this mechanism
allows fast reroute to be enabled for some chosen routes, and
disabled for others, which can potentially save space in the
routing table.

3.2.2 Multipath Routing
Equal cost multipath has been chosen for its simplicity

in implementation and limited packet reordering. To im-
plement this we search if each of the destinations can be
reached over multiple interfaces (as calculated by different
algorithm runs) in the same minimum hop count. If this is
so, all such interfaces are added to the routing table entry, if
not, only the shortest path interface is added to the routing
table.

In order to measure performance and demonstrate how
fast reroute and multipath routing work, a demo applica-
tion is being developed. This application consists of a GUI
and a backend. The backend communicates with all routers
and collects statistical information, such as packet count for
each interface of each router. It is also aware of the network
topology, which it then feeds to the GUI for visual presen-
tation, together with the statistical data. Results will be
available soon, as the demo application is completed.

4. CONCLUSION
In this paper we described the design and implementa-

tion of the fast reroute and multipath routing extensions
to the NetFPGA reference router. Implemented with very
little modification to the hardware pipeline, these features
enhance the robustness and efficiency of the network. In
addition, the GUI frontend can be used to visualize and val-
idate the performance of the system.

This work is based on a beta version of the NetFPGA gate-
ware, which lacks TCAM cores and SCONE (Software Com-
ponent Of NetFPGA). In the future, we will port the code
to NetFPGA beta-plus version, in order to achieve higher
performance and reliability.

5. REFERENCES
[1] NetFPGA Group, “NetFPGA reference router,”

http://netfpga.org/wordpress/netfpga-ipv4-reference-
router/.

[2] Stanford University CS344 Class, “Pee-Wee OSPF
Protocol Details,”
http://yuba.stanford.edu/cs344/pwospf/.

[3] P. Pan, G. Swallow, and A. Atlas, “Fast Reroute
Extensions to RSVP-TE for LSP Tunnels,” RFC 4090
(Proposed Standard), Internet Engineering Task Force,
May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4090.txt

[4] D. Thaler and C. Hopps, “Multipath Issues in Unicast
and Multicast Next-Hop Selection,” RFC 2991
(Informational), Internet Engineering Task Force, Nov.
2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2991.txt

[5] Xilinx, Inc, “An overview of multiple CAM designs in

Virtex family devices,” http://www.xilinx.com/sup-
port/documentation/application notes/xapp201.pdf.

[6] ——, “Designing flexible, fast CAMs with Virtex family
FPGAs,” http://www.xilinx.com/support/documen-
tation/application notes/xapp203.pdf.

[7] Broadcom Corporation, “BCM5464SR Quad-Port
10/100/1000BASE-T Gb Transceiver with
Copper/Fiber Media Interface,”
http://www.broadcom.com/products/Enterprise-
Networking/Gigabit-Ethernet-
Transceivers/BCM5464SR.

Using the NetFPGA in the Open Network Laboratory

Charlie Wiseman, Jonathan Turner, John DeHart, Jyoti Parwatikar,
Ken Wong, David Zar

Department of Computer Science and Engineering
Washington University in St. Louis

{cgw1,jst,jdd,jp,kenw,dzar}@arl.wustl.edu

ABSTRACT
The Open Network Laboratory is an Internet-accessible net-
work testbed that provides access to a large set of hetero-
geneous networking resources for research and educational
pursuits. Those resources now include the NetFPGA. ONL
makes it easy for NetFPGA users to integrate multiple NetF-
PGAs into heterogeneous experimental networks, using a
simple graphical user interface. The testbed software infras-
tructure automatically manages all of the details, including
mapping the user’s topology to actual hardware and time-
sharing of resources via a standard reservation mechanism.
The inclusion of NetFPGAs into the testbed allows users
just getting started with NetFPGAs to conduct interesting
research quickly without the need to set up and manage
the NetFPGAs themselves. For more experienced users, the
testbed provides an easy path to larger and more diverse
experimental configurations.

1. INTRODUCTION
Networking and systems researchers have come to rely on

a wide range of tools and platforms to conduct their exper-
iments. This includes specific types of technology as well
as simulation and testbed environments. One such technol-
ogy that has recently seen wide adoption is the NetFPGA
[11][9][15], which is a relatively inexpensive reprogrammable
hardware platform. NetFPGAs are now also available as
part of the Open Network Laboratory (ONL) testbed [6].

ONL is an Internet-accessible network testbed which fea-
tures resources based on a variety of networking technolo-
gies. Users configure arbitrary network topologies with a
simple GUI tool and then run interactive experiments using
that topology. The user is granted sole control of the physi-
cal components that make up their topology for the duration
of their experiment. Sharing is accomplished via a standard
reservation mechanism. ONL is open to all researchers and
educators (at no cost, of course).

There are advantages to using NetFPGAs in ONL for the
entire range of NetFPGA users. Clearly, it opens the way
for NetFPGA use by those who do not have the means to
acquire, set up, and manage their own NetFPGA installa-
tions. This barrier is already low for many users due to the
low cost of the platform and substantial available documen-
tation. However, the ongoing overheads to manage many
NetFPGAs can be high in certain contexts. One example is
a course where many students have to coordinate to share
a small number of NetFPGAs. ONL enables this sharing
naturally with minimal additional overhead to both the ed-
ucator and the students. More generally, ONL removes the

management overhead when there is substantial sharing of
NetFPGA resources.

For existing NetFPGA users, ONL provides an easy means
to experiment with NetFPGAs in a variety of elaborate con-
figurations. ONL currently has nearly 20 routers and over
100 PCs in addition to 6 NetFPGAs. This allows researchers
to build experimental topologies that reflect many real world
scenarios. Moreover, it only takes a few minutes with the
GUI to configure an entirely different topology. It would
require a substantial investment of money and time to re-
produce this capability in a local environment. The ability
to quickly run experiments over diverse network configura-
tions is particularly useful in conjunction with the NetFPGA
because of its highly flexible nature.

The rest of the paper is organized as follows. Section 2
provides background information about ONL including brief
descriptions of the other resources currently available in the
testbed. Section 3 describes how to use NetFPGAs as part
of ONL along with three examples. Related work is covered
in Section 4, and some future work is discussed in Section
5. Finally, Section 6 contains closing thoughts.

2. ONL
The Open Network Laboratory testbed provides a diverse

set of user-configurable resources for network experimenta-
tion. This includes both research and educational contexts
[23]. The Remote Laboratory Interface (RLI) is a simple
Java GUI run on the user’s computer to configure exper-
imental topologies and monitor network traffic within the
topology in real time. An example experiment consisting of
a small dumbbell topology is shown in Figure 1. The top
of the figure is the topology configuration window and the
bottom is a real time chart with three data sets showing
bandwidth at various points in the topology.

Users first configure their network topology with the RLI
by selecting various components from the menus and link-
ing them together. Once the topology is ready, a reservation
is made to ensure that the required resources will be avail-
able for the duration of the user’s experiment. Specifically,
the reservation request consists of a length and a range of
times that the user chooses during which they could run
their experiment. The ONL software will either grant the
reservation for a specific interval during the given range of
times, or reject the reservation if there are not enough re-
sources available during that time. The resource availability
for the near future can be found on the ONL website [16]
to aid in finding open time slots. Also note that each user
may have many outstanding reservations. Users are guaran-

Figure 1: Example ONL configuration with real time
charts.

teed to be able to run their experiment without interference
from any other experiments for their reservation duration.
When the time for the reservation arrives, the RLI is used
to start the experiment as well as to monitor and configure
the resources in the experiment topology.

Before moving on the NetFPGA, a brief description is
given of the other ONL resources.

The Network Services Platform (NSP) [4] is a custom-
built IP router designed in the style of larger, scalable router
platforms. Each of the eight ports is an independent entity
and consists of a 1 Gb/s interface, a Field Programmable
Port Extender (FPX) [12], and a Smart Port Card (SPC)
[7]. A 2 Gb/s cell switch connects the ports together. The
FPX handles all the common packet processing tasks such as
classification, queueing, and forwarding. The SPC contains
a general purpose processor which is used to run plugins.
Plugins are user developed code modules which can be dy-
namically loaded on to the router ports to support new or
specialized packet processing. There are currently 4 NSPs
in ONL.

Next is the Network Processor-based Router (NPR) [22],
which is an IP router built on Intel IXP 2800s [1]. The NPR
has five 1 Gb/s ports and a Ternary Content Addressable
Memory (TCAM) which is used to store routes and packet
filters. User written plugins are supported as in the NSP. In
the case of the NPR, five of the sixteen MicroEngine cores on
the IXP are dedicated to running plugin code and the user
has the ability to dynamically map different plugins to dif-
ferent MicroEngines. Packet filters are used to direct specific
packet flows to the plugins, and the plugin can forward the
packet to outbound queues, to another plugin, back to the
classification engine, or the packet can be dropped. There
are currently 14 NPRs in ONL.

Standard Linux machines are used as traffic sources and
sinks. Every host has two network interfaces: a 1 Gb/s data

Figure 2: RLI Topology Menu.

interface which is used in the experimental topology, and a
separate management interface. Once a user’s experiment
is active, they are granted SSH access through the manage-
ment interface to each host in their topology. The hosts
are all installed with a range of utilities and traffic genera-
tors, and users are welcome to install their own software in
their user directory (which is shared across all the hosts).
The only limitation in the environment is that users are not
given a root shell, so any specific actions requiring root priv-
ileges are granted through normal sudo mechanisms. There
are currently over 100 hosts in ONL.

All of the ONL resources are indirectly connected through
a set of configuration switches. Virtual Local Area Networks
(VLANs) are used extensively in the switches to enforce iso-
lation among different experiments. All of the configura-
tion of these switches takes place automatically and invisi-
bly from a user’s perspective. The reservation system is re-
sponsible for ensuring that the configuration switches have
sufficient capacity to guarantee that no experiment could
ever interfere with any other experiment. VLANs also pro-
vide a way for ONL to support standard Ethernet switches
in experimental topologies.

3. USING NETFPGAS IN ONL
The are currently 6 NetFPGAs available in ONL, each

installed in a separate Linux host. The hosts have the base
NetFPGA software distribution installed, as well as many
of the other NetFPGA project distributions. Similar to the
standard ONL hosts, users are granted SSH access to the
NetFPGA host for each NetFPGA in their experimental
topology so that they can run the utilities to load and con-
figure the hardware. There are a few of these utilities that
require root privileges to run, so sudo is employed as on the
other ONL hosts. After each experiment ends, the hosts are
rebooted automatically and the NetFPGAs are prepared for
user programming.

Most of the other ONL resources directly support mon-
itoring and configuration in the RLI via software daemons
that are tightly coupled with the individual resources. No
such daemon exists for the NetFPGA because the interfaces
for monitoring and configuration change depending on what
is currently running on the hardware. As such, all configu-
ration is done via the utilities and scripts that are already
provided with the existing projects. Monitoring can be done
in the RLI indirectly by means of a simple mechanism sup-
ported by the ONL software. Specifically, the RLI can mon-
itor and plot data that is put into a file on the host (the file

Figure 3: Configuration using many different types of resources with bandwidth and queue length charts.

location is specified in the RLI). Users write scripts to pop-
ulate these files with whatever data they choose. For the
NetFPGA, that will typically mean reading registers that
contain packet or byte counts in order to display packet
rates, bandwidths, or queue lengths in the RLI.

NetFPGAs are added to a configuration in the RLI sim-
ilarly to other types of resources, with one exception. The
core function of other resources is fixed in nature, i.e., a re-
source is either a router or something else such as a switch,
or a traffic source or sink. This is important when the ONL
software configures each resource, as hosts need to know
their default gateway, and routers need to know if they are
connected to other routers in order to build network routes
correctly. NetFPGAs, however, can fill either role and so
each NetFPGA is added either as a router node or as a non-
router node. A screenshot of the actual RLI menu is shown
in Figure 2.

Three examples are given next to illustrate how NetFP-
GAs are typically used in ONL.

3.1 IP Router
The first example is something that might be seen in an

introductory networking course. The topology configuration
is shown on the left of Figure 3. The 4 port device at the
bottom right of the central “square” is a NetFPGA acting
as an IP router. The 8 port device above it is an NSP and
the 5 port devices to the left are NPRs. The small ovals
connected to each of the routers are Ethernet switches. The
others symbols are hosts.

The user configures the NetFPGA by logging in to the
PC that hosts the NetFPGA assigned to this experiment,
which can be determined by clicking on the NetFPGA in
the RLI or by referencing shell variables that are automat-
ically added to the user’s ONL shell. For this experiment,

the reference IP router bit file is loaded from the command
line via the nf2 download utility. Then the software compo-
nent of the reference router, SCONE, is started. In order to
configure the router appropriately, SCONE must be given
the Ethernet and IP information for each of the NetFPGA
ports as well as the static routes for the router. Normally
this information would be sent directly from the RLI to a
software daemon that understands how to manage each type
of resource. As mentioned above, the NetFPGA interface
changes depending on the situation, so the user must build
this information manually. We are currently working on
ways to ease this burden.

Once the router hardware and software are running, the
NetFPGA is acting as a standard IP router and is treated
as such by the user. In this example, the user is studying
TCP dynamics over a shared bottleneck link. Three TCP
flows are sent from hosts in the bottom left of the topology
to hosts in the bottom right across the link from the NPR
to the NetFPGA. Two of the flows share an outgoing queue
at the bottleneck link and the third flow has its own queue.
The link capacity is set at 500 Mb/s, the shared queue is
1 MB in size, and the non-shared queue is 500 KB in size.
The first flow is a long-lived flow, the second is a medium
length flow, and the third is a short flow.

The top right of Figure 3 shows the throughput seen by
each flow and the bottom right shows the queue lengths at
the bottleneck. The first flow consumes the entire bottleneck
capacity in the absence of other traffic. Once the second
flow begins, the two attempt to converge to a fair share
of the link, but the third flow begins before they reach it.
The NPR is using a typical Weighted Deficient Round Robin
scheduler. The user has configured the two queues to receive
an equal share of the capacity by setting their scheduling
quanta to be the same. The result is that the third flow

Figure 4: Using NetFPGAs as packet generators to
stress test NPR multicast.

gets 250 Mb/s of the 500 Mb/s link because it is the only
flow in its queue, and the first two share the remaining 250
Mb/s because they are sharing a queue.

3.2 Traffic Generation
The second example utilizes NetFPGAs as packet gener-

ators [5]. In general, it is quite difficult to produce line rate
traffic for small packets from general purpose PCs. The
ONL solution in the past was to either use many hosts to
aggregate traffic on a single link or to use special purpose
plugins in the routers that made many copies of each in-
put packet and thus multiply the input traffic up to the line
rate. Each option required the use of many resources and
produced results that were difficult to control precisely. The
NetFPGA packet generator is a much cleaner solution as it
can produce line rate traffic on all four ports of any size
packet. The packets are specified in the standard PCAP file
format.

For this example, NetFPGA packet generators are used to
stress test the NPR capabilities. The configuration used is
shown in the top of Figure 4. There are actually two separate
networks in this configuration. The one on the left is used to
generate the packet traces needed for the packet generator,
and the one on the right is used to perform the actual stress
test. To generate the traces, the hosts send packets via
normal socket programs and the user runs tcpdump on the
nodes to record the packet streams.

The bottom of Figure 4 shows the results from one par-
ticular stress test. The NPR natively supports IP multi-
cast (details in [22]), and this test is meant determine if
the packet fanout has any effect on peak output rate for
minimum size packets. The fanout is simply the replication
factor for each incoming packet. Four sets of traffic are sent
to the NPR in succession. The first set has a fanout of one,
meaning that each input packet is sent out one other port.

Figure 5: An OpenFlow network with real time
charts generated from counters on one OpenFlow
switch.

The second set has a fanout of two, the third has a fanout
of three, and the last has a fanout of four. In each case the
total input rate is set so that the total output rate would
be 5 Gb/s if the router dropped no packets, and the input
and output rates are each shared equally by all 5 ports. The
chart shows the aggregate input rate (solid line) and output
rate (dashed line) at the router. In each test, the output rate
is around 3 Gb/s, showing that the fanout has little effect
on the eventual output rate. Other tests confirm that the
peak forwarding rate for minimum size packets is around 3
Gb/s for unicast traffic as well.

3.3 OpenFlow
The last example is of an OpenFlow [13] network. There

is an existing NetFPGA OpenFlow switch implementation
which supports the Type 0 specification [14]. A description
of OpenFlow is out of scope for this paper, but more details
can be found on the OpenFlow website [17].

The top of Figure 5 shows an OpenFlow network topology
with 5 NetFPGAs acting as OpenFlow switches, 5 Ethernet
switches, and 25 hosts. This example demonstrates Open-
Flow switches inter-operating with non-OpenFlow (i.e, stan-
dard Ethernet) switches. Every OpenFlow network needs a
controller that is responsible for interacting with and con-
figuring the OpenFlow switches. The OpenFlow software
distribution comes with a basic controller that allows each
OpenFlow switch to operate as a normal learning Ether-

net switch. Nox [10] is another OpenFlow controller which
is substantially more complex and configurable. Both con-
trollers are available on all ONL hosts so that any ONL host
can act as an OpenFlow controller.

The bottom of Figure 5 shows a chart monitoring packet
rates through the OpenFlow switch in the middle of the
topology when there are many flows traversing the network.
The chart is generated as described above by parsing the
output of an OpenFlow utility which reads per-flow counters
in the switch. The results are placed in a file which allows
them to be displayed in the RLI.

4. RELATED WORK
There are a few network testbeds that are generally sim-

ilar to ONL. Of these, ONL is closest in nature to Emulab
[21]. The Emulab testbed has been widely used for research
and can often be found as part of the experimental eval-
uation in papers at top networking conferences. Emulab
provides access to a large number of hosts which can be
used to emulate many different types of networks. As in
ONL, every host has at least two network interfaces. One
is used for control and configuration, and the others are
used as part of the experimental topology. Also as in ONL,
Emulab uses a small number of switches and routers to in-
directly connect all the hosts in the testbed. Emulab has
many useful features which make it an attractive choice for
conducting research. For example, users can configure in-
dividual link properties such as delay and drop rate, and
the Emulab software automatically adds an additional host
which is used as a traffic shaper for that link. According to
the Emulab website [8], they have also added six NetFPGAs
as testbed resources.

The Emulab software has also been made available so that
other groups can use it to run their own testbeds. Many
of these Emulab-powered testbeds are currently operating,
although most of them are not open to the public. One ex-
ception is the DETER testbed [3] that is focused on security
research. The control infrastructure is identical to Emulab,
but additional software components were added to ensure
that users researching security holes and other dangerous
exploits remain both contained in the testbed and isolated
from other experiments. The Wisconsin Advanced Internet
Laboratory (WAIL) [20] is another such testbed that uti-
lizes the Emulab software base. WAIL is unique among the
Emulab testbeds in that they have extended the software to
support commercial routers as fundamental resources avail-
able to researchers.

Another widely used testbed is PlanetLab [18]. At its
core, PlanetLab simply consists of a large number of hosts
with Internet connections scattered around the globe. At
the time of this writing there are over 1000 PlanetLab nodes
at over 480 sites. Each PlanetLab node can support multiple
concurrent experiments by instantiating one virtual machine
on the node for each active experiment. The PlanetLab con-
trol software takes user requests to run an experiment on a
set of nodes and contacts the individual nodes to add the
virtual machines for the user. Researchers use PlanetLab
to debug, refine, and deploy their new services and applica-
tions in the context of the actual Internet. Unfortunately,
PlanetLab’s success has resulted in large numbers of active
experiments, particularly before major conference deadlines.
This often leads to poor performance for any individual ex-
periment because each active experiment is competing for

both processor cycles and the limited network bandwidth
available on the host.

There have been a few efforts that aim to enhance Plan-
etLab through the design of new nodes that enable better
and more consistent performance while still operating in the
PlanetLab context. VINI [2] is at the front of these efforts.
VINI nodes are currently deployed at sites in the Internet2,
National LambdaRail, and CESNET backbones [19], and
have dedicated bandwidth between them. The VINI infras-
tructure gives researches the ability to deploy protocols and
services in a realistic environment in terms of network con-
ditions, routing, and traffic.

With the exception of WAIL, all of these testbeds pro-
vide direct access only to hosts. WAIL does provide access
to commercial routers, although the website indicates that
it is read-only access, i.e., users do not have the ability to
configure the routers themselves. In contrast, ONL does
provide user-driven control of many different types of net-
working technology, and we hope to continue increasing the
resource diversity in the future.

5. FUTURE WORK
As discussed earlier, most ONL resources are configured

primarily through the RLI. Configuration updates are sent
to the daemon that manages the resource and knows how
to enact the updates. This is not possible with the NetF-
PGA because the types of configuration change depending
on how it is being used. Moreover, two different imple-
mentations of the same functionality may export different
configuration interfaces. For example, there are already two
IP routers available that have different interfaces for adding
routes. The result is that all configuration of NetFPGAs is
done manually. Simple scripts help to reduce the time spent
doing manual configuration, but they can not remove the
need for it completely.

An alternative that is being considered is to have differ-
ent NetFPGA options available in the RLI that correspond
to specific NetFPGA implementations. This would allow
a user to add, for example, a NetFPGA IP router using
the NetFPGA reference router specifically. The RLI would
then load the correct bit file, automatically compute and
add routes, set up the NetFPGA port addresses, and be
able to monitor values in the router directly. In fact, being
able to monitor packet counters directly via the RLI would
make such a feature valuable even to a project like the refer-
ence Ethernet switch which requires no user configuration.
The largest obstacle is that there has to be an ONL software
daemon for each NetFPGA project which can receive these
configuration and monitoring requests. While some of the
most common projects could be supported relatively easily
by ONL staff, a more scalable approach would allow any
user to dynamically provide the portions of code required
to actually carry out the requests. In this way, users could
leverage the ONL infrastructure even for their own private
NetFPGA projects.

6. CONCLUSION
NetFPGAs are a particularly versatile networking plat-

form which can be used as routers, switches, traffic gen-
erators, and anything else that NetFPGA developers can
build. Deploying such a platform in a network testbed like
the Open Network Laboratory benefits both existing testbed

users and NetFPGA users. Six NetFPGAs have been added
to the ONL resource set and more could be added if there is
sufficient interest and use. This allows those interested in us-
ing NetFPGAs to get started immediately without the need
to set up and manage the NetFPGAs themselves. Educators
in particular are likely to benefit from this. It also provides
a means for existing NetFPGA users to test and experiment
with their own projects in much broader and more diverse
configurations than are likely available in a local lab. In
general, we believe that the inclusion of NetFPGAs in ONL
will help both projects to reach broader audiences. The
ONL source code is available on request.

7. REFERENCES
[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich,

and H. Wilkinson. The next generation of intel ixp
network processors. Intel Technology Journal, 6, 2002.

[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In vini veritas: Realistic and controlled
network experimentation. In SIGCOMM ’06:
Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications, pages 3–14, New York,
NY, USA, 2006. ACM.

[3] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab. Design,
deployment, and use of the deter testbed. In DETER:
Proceedings of the DETER Community Workshop on
Cyber Security Experimentation and Test on DETER
Community Workshop on Cyber Security
Experimentation and Test 2007, pages 1–1, Berkeley,
CA, USA, 2007. USENIX Association.

[4] S. Choi, J. Dehart, A. Kantawala, R. Keller, F. Kuhns,
J. Lockwood, P. Pappu, J. Parwatikar, W. D. Richard,
E. Spitznagel, D. Taylor, J. Turner, and K. Wong.
Design of a high performance dynamically extensible
router. In Proceedings of the DARPA Active Networks
Conference and Exposition, May 2002.

[5] G. A. Covington, G. Gibb, J. Lockwood, and
N. McKeown. A packet generator on the netfpga
platform. In The 17th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines,
5–7 April 2009.

[6] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner,
C. Wiseman, and K. Wong. The open network
laboratory. In SIGCSE ’06: Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science
Education, pages 107–111, New York, NY, USA, 2006.
ACM.

[7] J. D. DeHart, W. D. Richard, E. W. Spitznagel, and
D. E. Taylor. The smart port card: An embedded
unix processor architecture for network management
and active networking. Technical report, Washington
University, August 2001.

[8] Emulab. Emulab website. http://www.emulab.net.

[9] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and
N. McKeown. Netfpga: Open platform for teaching
how to build gigabit-rate network switches and
routers. 51(3):364–369, Aug. 2008.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: towards an
operating system for networks. SIGCOMM Comput.

Commun. Rev., 38(3):105–110, 2008.

[11] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.
Netfpga–an open platform for gigabit-rate network
switching and routing. In Proc. IEEE International
Conference on Microelectronic Systems Education
MSE ’07, pages 160–161, 3–4 June 2007.

[12] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E.
Taylor. Reprogrammable network packet processing on
the field programmable port extender (fpx). In FPGA
’01: Proceedings of the 2001 ACM/SIGDA ninth
international symposium on Field programmable gate
arrays, pages 87–93, New York, NY, USA, 2001. ACM.

[13] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. volume 38, pages 69–74, New York, NY,
USA, 2008. ACM.

[14] J. Naous, D. Erickson, G. A. Covington,
G. Appenzeller, and N. McKeown. Implementing an
openflow switch on the netfpga platform. In ANCS
’08: Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, pages 1–9, New York, NY, USA, 2008. ACM.

[15] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
Netfpga: reusable router architecture for experimental
research. In PRESTO ’08: Proceedings of the ACM
workshop on Programmable routers for extensible
services of tomorrow, pages 1–7, New York, NY, USA,
2008. ACM.

[16] ONL. Open network laboratory website.
http://onl.wustl.edu.

[17] OpenFlow. Openflow website.
http://openflowswitch.org.

[18] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into
the internet. In Proceedings of HotNets–I, Princeton,
New Jersey, October 2002.

[19] VINI. Vini website. http://www.vini-veritas.net.

[20] WAIL. Wisconsin advanced internet laboratory
website. http://www.schooner.wail.wisc.edu/.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In OSDI ’02:
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 255–270,
New York, NY, USA, 2002. ACM.

[22] C. Wiseman, J. Turner, M. Becchi, P. Crowley,
J. DeHart, M. Haitjema, S. James, F. Kuhns, J. Lu,
J. Parwatikar, R. Patney, M. Wilson, K. Wong, and
D. Zar. A remotely accessible network processor-based
router for network experimentation. In ANCS ’08:
Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, pages 20–29, New York, NY, USA, 2008.
ACM.

[23] K. Wong, T. Wolf, S. Gorinsky, and J. Turner.
Teaching experiences with a virtual network
laboratory. In SIGCSE ’07: Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education, pages 481–485, New York, NY, USA, 2007.

Implementation of a Future Internet Testbed on
KOREN based on NetFPGA/OpenFlow Switches

Man Kyu Park, Jae Yong Lee, Byung Chul Kim, Dae Young Kim
Dept. of Infocomm Eng., Chungnam National University, Daejeon, 305-764, Korea

mkpark@ngn.cnu.ac.kr, {jyl, byckim, dykim}@cnu.ac.kr

Abstract—A large-scale testbed implementation for Future
Internet is very important to evaluate new protocols and
functions designed by clean-slate approach. In Korea, a new
project for deploying Future Internet testbed called FIRST just
has been started. This project consists of two sub-projects. One is
the ‘FIRST@ATCA’ for implementing large platform based on
ATCA chassis and the other is the ‘FIRST@PC’ for
implementing the PC-based platform utilizing
NetFPGA/OpenFlow switches. Of them, the scope of work on the
FIRST@PC project is to develop PC-based platform using
NetFPGA/OpenFlow switch and to design service operation and
control framework on the dynamic virtualized slices. In this
paper, we first introduce some activities related to the Korea
Future Internet testbed and interim results of ongoing
FIRST@PC projects, especially about NetFPGA module
extension and performance test on the KOREN network. We are
now implementing a network emulator function on the NetFPGA
platform which can control bandwidth, delay and loss for
network experiments, and we plan to evaluate the performance of
various high-speed TCP protocols using this emulator.

Keywords- Future Internet, testbed, NetFPGA, OpenFlow,
GENI, Network Emulator

I. INTRODUCTION

Current Internet has many serious limitations in the aspects
of scalability, security, QoS, virtualization, and so on. So,
recently some major projects to design a new Internet
architecture by using clean-slate approach have been started
and large-scale testbeds for the evaluation of new protocols
have just begun to be deployed. Future Internet testbed requires
some advanced concept, such as programmability,
virtualization, end-to-end slice, federation, and network
resource management. Some of well known projects are GENI
(Global Environment for Network Innovation) [1], FIRE
(Future Internet Research and Experimentation) [2], and
NwGN (New Generation Network) [3].

In Korea, we also started a new project to design and
deploy Future Internet testbed, called ‘FIRST’ (Future Internet
Research for Sustainable Testbed)[4], from Mar. 2009. This
project consists of two sub-projects. One is the
‘FIRST@ATCA’ for implementing a large platform based on
ATCA chassis and the other is the ‘FIRST@PC’ for
implementing a PC-based platform utilizing NetFPGA and
OpenFlow switches. The latter one is to implement a
virtualized hardware-accelerated PC-node by extending the
functions of NetFPGA card and build a Future Internet testbed

on the KOREN and KREONET for evaluating newly designed
protocols and some interesting applications.

In this paper, we first introduce some activities related to
the Korea Future Internet testbed and interim results of
ongoing FIRST@PC projects, especially about NetFPGA
module extension and performance test on the
KOREN/KREONET network. We have first implemented a
‘Capsulator’ user-space program using raw-socket in Linux to
interconnect OpenFlow enabled switch sites on the KOREN
and KREONET and tested throughput performance for varying
packet sizes. Also, we are implementing a network emulator
function on the NetFPGA which can control bandwidth, delay
and loss for network experiments. and we plan to evaluate
various high-speed TCP throughputs using this emulator. As a
next step, we’ll implement packet schedulers and buffer
controllers such as WRED by extending NetFPGA basic
module for Future Internet testbed functions.

II. FIRST PROJECT

The new testbed project in Korea is named FIRST, in
which the ETRI and 5 universities have participated since Mar.
2009. The scope of work on the ETRI’s project,
‘FIRST@ATCA’, is to implement a virtualized programmable
Future Internet platform. It consists of software for
control/virtualization and ATCA-based COTS (Commercial
Off The Shelf) hardware platform. Another approach to deploy
Future Internet testbed is progressed by 5 universities (GIST,
KAIST, POTECH, Kyung-Hee Univ., Chungnam Nat’l Univ.).
The scope of this ‘FIRST@PC’ project is to develop a PC-
based platform using NetFPGA/OpenFlow switches and to
design a service operation and control framework on dynamic
virtualized slices. These two types of platforms will be utilized
as infra-equipments in the core and access networks of Korea
Future Internet testbed.

The PC-based platform is to be built using a VINI-style [5]
or hardware-accelerated NetFPGA/Openflow switches. The
platform block diagram for supporting virtualization and
programmable networking capability is shown in Figure 1. We
call this platform as Programmable Computing/Networking
Node (PCN).

Figure 2 shows the overall FIRST testbed model. This
framework should support dynamic interconnection of all the
PCNs according to user’s request. The basic agent-based
software stack should be implemented for configuring slices
and controlling distributed services by using available

resources (processing power, memory, network bandwidth,
etc.) efficiently. On this testbed, multimedia-oriented services
will be runned for showing efficiency of control operation.

Figure 1. PC-based PCN platform architecture [6]

Figure 2. Service operation and control framework [6]

III. KOREN TESTBED USING NETFPGA/OPENFLOW

SWITCH

In this section, we explain the KOREN and an
implementation of NetFPGA/Openflow switch testbed on the
KOREN.

A. Introduction to the KOREN
The KOREN (Korea Advanced Research Network) [7] is a

non-profit testbed network infrastructure for field testing of
new protocols and international joint research cooperation. The
backbone network connects major cities in Korea at the speed
of 10 ~ 20Gbps as shown in Fig. 3. Some previous usage
examples on KOREN are as follows;

 Korea-China IPTV testbed configuration and overlay
multicast research

 High-quality tele-lecture and video conference based on
IPv6

 Research on mesh-based access network for Korea-US
Future Internet

 Telemedicine demonstration using high definition video

This year, NIA (National Information Society Agency)
calls for a new project about Future Internet testbed
deployment using NetFPGA/OpenFlow switches on the
KOREN. This project will be launched soon and about 10
universities will participate to evaluate the performance of
NetFPGA-installed OpenFlow switches under various topology
and environments on the KOREN. Using this testbed, we plan
to test network functionality and various application services.
It will be a good chance to encourage lots of Korean
researchers to contribute to the NetFPGA community as a
developer.

Figure 3. The KOREN topology

B. Implementing Openflow switch testbed on the KOREN
We have been implementing the NetFPGA-based

Openflow switch testbed on the KOREN in order to be used for
Future Internet research activity. Since the Openflow switches
forward their frames according to the flow tables inserted by an
Openflow controller such as Nox controller [8], we can
consider that the routing function is performed at the controller
and the Openflow Switches are operated at Layer 2 frame level.
Thus, we need to tunnel Openflow frames intact from one
openflow site to another Openflow site through the KOREN,
because there are no Openflow aware nodes now in the
KOREN. So, we have implemented a Capsulator program first
introduced in [9] which performs tunneling Openflow frames
through the KOREN as shown in Figure 4. Using this
Capsulator, L2 bridge is emulated on the KOREN. At this time
there is one Nox controller for Openflow testbed on the
KOREN located in CNU (Chungnam National University).

Basically, the Capsulator performs “MAC frame in IP”
tunneling in which Openflow frames are encapsulated into IP
packet for tunneling between openflow sites through the
KOREN. We have implemented a Capsulator as an user-space
application in Linux by using ‘libpcap’ socket [10] and UDP
socket (or IP raw socket) as shown in Figure 5.

Figure 4. Service operation and control framework

Figure 5. Capsulator model implemented as an user application

When an Openflow frame is captured, a flow ID is attached
to the head of the frame after flow classification and then it is
encapsulated into an IP packet as shown in Figure 5. Then,
virtual bridge table is consulted to find the destination ‘bridge
ports’ for forwarding. The flow ID can be utilized for various
virtual network functions such as traffic isolation scheduler.

Figure 6. MAC frame encapsulation in a capsulator

We have measured the throughput performance of the
Openflow testbed between two sites, CNU and GIST, by using
‘iperf’ program [11] with TCP Reno and UDP for various
packet sizes. The host in CNU is attached to the KREONET
and the host in GIST is attached to the KOREN. Both hosts
have line-rate 1 Gbps.

Table 1 shows the measurement results for the two
transport protocols. The throughput of TCP Reno is about 140
Mbps and that of UDP is about 180 Mbps. One can see that
these throughput values are rather limited compared to the line
rate 1 Gbps. The main reason for this is that the implemented
Capsulator is a user space program. In order to enhance the
performance, it is necessary to implement the Capsulator in the
kernel level, or to use the NetFPGA platform for Capsulator
implementation to utilize its hardware acceleration. We plan to
implement a Capsulator on the NetFPGA platform.

TABLE I. THROUGHPUT PERFORMANCE OF OPENFLOW TESTBED
BETWEEN THE KOREN AND KREONET.

Packet sizes (bytes) 64 128 256 512 1024 1400
TCP Reno (Mbps) 3.21 3.34 10.8 27.1 57.3 139

UDP (Mbps) 3.4 6.85 13.7 139 179 179

IV. IMPLEMENTING A NETWORK EMULATOR ON THE

NETFPGA PLATFORM

When network researchers want to evaluate the
performance of newly designed protocols or network
mechanisms, they need to deploy them in real networks and do
experiments they want to perform. However, it is usually very
difficult to adjust network environments for experiments as
they want, because it is hard to manage the real network
characteristics appropriate to their experiments. In this case,
network emulators can do appropriate role by emulating a real
network situation. The network emulators can control the
bottleneck bandwidth, passing delay, and packet loss
probability in order to emulate real network conditions.

The Dummynet [12] and the NISTnet [13] are widely used
network emulators that can be installed and operated in
ordinary PCs. However, the main drawback of these emulators
is their performance limitations caused by software processing
of control actions in rather low-performance PC platforms.
They reveal marginal performance with almost 100% CPU
utilization for two NICs with line rate 1 Gbps. Furthermore, the
bottleneck of PCI bus performance is another main reason for
performance degradation of network emulators.

The NetFPGA platform is a network hardware accelerator
that can handle packet processing at line rate without CPU
participation. Thus, if we use the NetFPGA for network
emulator implementation, we can get an excellent network
emulation tool and replace the software tools.

Figure 7. NetFPGA Reference Pipeline [14]

 The gateware of the NetFPGA is designed in a modular
fashion to allow users to modify or reconfigure modules to
implement other useful devices. Basically, a network emulator
needs to have 3 traffic control functions, i.e., the control of
bottleneck bandwidth, the control of passing delay, and the
control of packet loss probability. We can implement an
efficient network emulator by using the design of the reference
pipeline of the NetFPGA as shown in Figure 7 [14], which is
comprised of eight receive queues, eight transmit queues, and
user data path which includes input arbiter, output port lookup
and output queues.

MAC
Header

Frame Payload

MAC IP UDP Payload

Flow
ID

Openflow frame

In
p

u
t A

rb
ite

r

O
u

tp
u

t P
o

rt L
o

o
ku

p

O
u

tp
u

t Q
u

e
u

e
s

Figure 8. Nerwork Emaulator Pipeline Architecture

We can develop and add our modules to the user data path
appropriately. The register interface allows software programs
running on the host to exchange data with hardware module.
We can provide parameters for network emulation through
these register interfaces.

We can also utilize existing useful modules such as the
NetFPGA packet generator application [14]. The ‘bandwidth
limiter’ module can be used to implement the control of
bottleneck bandwidth. The ‘delay’ and ‘timestamp’ modules
can be used to implement the control of emulator passing delay,
and the ‘Drop_Nth_packet’ module [15] can be modified to
implement the control of packet loss probability of network
emulators. We use the reference router pipeline for
implementing the architecture of the network emulator as
shown in Figure 8. In this Figure, we added three traffic control
modules, i.e., the bottleneck bandwidth control module, the
delay control module, and the loss probability control module
to the end of each MAC output queue module. At the time of
this writing, we are implementing a network emulator. We plan
to do performance test of various high speed TCP protocols
such as HSTCP[16], CUBIC TCP [17] and etc. Since the
performance of these protocols is heavily dependent on
bottleneck bandwidth and end-to-end delay, the network
emulator can play very important role in the experiments. We
will show the effectiveness of our network emulator compared
to Dummynet or NISTnet.

V. CONCLUSION

In this paper, we have introduced a new project in Korea
for implementing platforms and deploying Future Internet
testbed using them, called ‘FIRST’. This project consists of
two sub-projects. One is the ‘FIRST@ATCA’ for
implementing large platform based on ATCA chassis, and the
other is the ‘FIRST@PC’ for implementing PC-based
platforms utilizing NetFPGA/OpenFlow switches. The scope
of the FIRST@PC project is to develop a PC-based platform
using NetFPGA/OpenFlow switches and to deploy Future
Internet testbed on the KOREN. We have explained the
ongoing status of the project, especially about NetFPGA
module extension and performance test on the KOREN
network. We have also showed the architecture of a network
emulator which is now in implementing by using the NetFPGA
platform. It will be useful in various network performance
evaluations. We are now developing useful modules and
components by using the NetFPGA platform and Openflow

switches which will be the basis of Korean Future Internet
testbed and global internetworking activities.

ACKNOWLEDGMENT

This paper is one of results from the project (2009-F-050-
01), “Development of the core technology and virtualized
programmable platform for Future Internet” that is sponsored
by MKE and KCC. I’d like to express my gratitude for the
concerns to spare no support for the research and development
of the project.

REFERENCES

[1] GENI: Global Environment for Network Innovations,
http://www.geni.net/

[2] FIRE: Future Internet Research and Experimentation,
http://cordis.europa.eu/fp7/ict/fire/

[3] Shuji Esaki, Akira Kurokawa, and Kimihide Matsumoto, “Overview of
the Next Generation Network,” NTT Technical Review, Vol.5, No.6,
June 2007.

[4] Jinho Hahm, Bongtae Kim, and Kyungpyo Jeon, “The study of Future
Internet platfom in ETRI”, The Magazine of the IEEK, Vol.36, No.3,
March, 2009.

[5] Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Vytautas
Valancius, Andy Bavier, Nick Feamster, Larry Peterson, and Jennifer
Rexford, "Hosting virtual networks on commodity hardware," Georgia
Tech Computer Science Technical Report GT-CS-07-10, January 2008.

[6] FIRST@PC Project, http://trac.netmedia.gist.ac.kr/first/

[7] KOREN: Korea Advanced Research Network,
http://koren2.kr/koren/eng/

[8] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado,
Nick McKeown, and Scott Shenker, "NOX: towards an operating system
for networks", ACM SIGCOMM Computer Communication Review,
Vol.38, No.3, 2008.

[9] Capsulator, http://www.openflowswitch.org/wk/index.php/Capsulator

[10] Libpcap, http://www.tcpdump.org/pcap.htm

[11] iperf, http://sourceforge.net/projects/iperf/

[12] Dummynet, http://www.dummynet.com/

[13] NISTnet, http://www-x.antd.nist.gov/nistnet/

[14] G. Adam Covington, Glen Gibb, John Lockwood, and Nick McKeown,
“A Packet Generator on the NetFPGA Platform”, IEEE Symposium on.
Field-Programmable Custom Computing Machines (FCCM), April 2009.

[15] Tutorial Proceeding : NetFPGA Tutorial in Seoul,
http://fif.kr/netfpga/NetFPGA_KOREA_2009_02_19.pdf

[16] Sally Floyd, “HighSpeed TCP for large congestion windows”, RFC3649,
Dec.2003

[17] Injong Rhee, Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant”, PFLDnet 2005.

A Fast, Virtualized Data Plane for the NetFPGA
Muhammad Bilal Anwer and Nick Feamster

School of Computer Science, Georgia Tech

ABSTRACT
Network virtualization allows many networks to share the
same underlying physical topology; this technology has of-
fered promise both for experimentation and for hosting mul-
tiple networks on a single shared physical infrastructure.
Much attention has focused on virtualizing the network con-
trol plane, but, ultimately, a limiting factor in the deployment
of these virtual networks is data-plane performance: Virtual
networks must ultimately forward packets at rates that are
comparable to native, hardware-based approaches. Aside
from proprietary solutions from vendors, hardware support
for virtualized data planes is limited. The advent of open,
programmable network hardware promises flexibility, speed,
and resource isolation, but, unfortunately, hardware does not
naturally lend itself to virtualization. We leverage emerg-
ing trends in programmable hardware to design a flexible,
hardware-based data plane for virtual networks. We present
the design, implementation, and preliminary evaluation of
this hardware-based data plane and show how the proposed
design can support many virtual networks without compro-
mising performance or isolation.

1. Introduction
Network virtualization enables many logical networks to

operate on the same, shared physical infrastructure. Virtual
networks comprise virtual nodes and virtual links. Creating
virtual nodes typically involves augmenting the node with a
virtual environment (i.e., either a virtual machine like Xen
or VMWare, or virtual containers like OpenVZ). Creating
virtual links involves creating tunnels between these virtual
nodes (e.g., with Ethernet-based GRE tunneling [4]). This
technology potentially enables multiple service providers to
share the cost of physical infrastructure. Major router ven-
dors have begun to embrace router virtualization [5,7,9], and
the research community has followed suit in building sup-
port for both virtual network infrastructures [2–4, 11] and
services that could run on top of this infrastructure [6].

Virtual networks should offer good performance: The in-
frastructure should forward packets at rates that are com-
parable to a native hardware environment, especially as the
number of users and virtual networks increases. The infras-
tructure should also provide strong isolation: Co-existing
virtual networks should not interfere with one another. A
logical approach for achieving both good performance and
strong isolation is to implement the data plane in hardware.
To date, however, most virtual networks provide only soft-
ware support for packet forwarding; these approaches pro-
vide flexibility, ease of deployment, low cost and fast de-
ployment, but poor packet forwarding rates and little to no
isolation guarantees.

This paper explores how programmable network hardware
can help us build virtual networks that offer both flexibility
and programmability while still achieving good performance
and strong isolation. The advent of programmable network
hardware (e.g., NetFPGA [8, 12]), suggests that, indeed, it
may be possible to have the best of both worlds. Of course,
even programmable network hardware does not inherently
lend itself to virtualization, since it is fundamentally difficult
to virtualize gates and physical memory. This paper repre-
sents a first step towards tackling these challenges. Specifi-
cally, we explore how programmable network hardware—
specifically NetFPGA—might be programmed to support
fast packet forwarding for multiple virtual networks running
on the same physical infrastructure. Although hardware-
based forwarding promises fast packet forwarding rates, the
hardware itself must be shared across many virtual nodes on
the same machine. Doing so in a way that supports a large
number of virtual nodes on the same machine requires clever
resource sharing. Our approach virtualizes the host using a
host-based virtualized operating system (e.g., OpenVZ [10],
Xen [1]); we virtualize the data plane by multiplexing the
resources on the hardware itself.

One of the major challenges in designing a hardware-
based platform for a virtualized data plane is that hardware
resources are fixed and limited. The programmable hard-
ware can support only a finite (and limited) amount of logic,
To make the most efficient use of the available physical re-
sources, we must design a platform that shares common
functions that are common between virtual networks while
still isolating aspects that are specific to each virtual network
(e.g., the forwarding tables themselves). Thus, one of the
main contributions of this paper is a design for hardware-
based network virtualization that efficiently shares the lim-
ited hardware resources without compromising packet for-
warding performance or isolation.

We present the design, implementation, and preliminary
evaluation of a hardware-based, fast, customizable virtual-
ized data plane. Our evaluation shows that our design pro-
vides the same level of forwarding performance as native
hardware forwarding. Importantly for virtual networking,
our design also shares common hardware elements between
multiple virtual routers on the same physical node, which
achieves up to 75% savings in the overall amount of logic
that is required to implement independent physical routers.
Additionally, our design achieves this sharing without com-
promising isolation: the virtual router’s packet drop behav-
ior under congestion is identical to the behavior of a single
physical router.

The rest of this paper is organized as follows. Section 2
presents the basic design of a virtualized data plane based on

1

programmable hardware; this design is agnostic to any spe-
cific programmable hardware platform. Section 3 presents
an implementation of our design using the NetFPGA plat-
form. Section 4 concludes with a summary and discussion
of future work.

2. Design Goals
This section outlines our design goals for a hardware-

based virtual data plane, as well as the challenges with
achieving each of these design goals.

1. Virtualization at layer two. Experimenters and ser-
vice providers may wish to build virtual networks that
run other protocols besides IP at layer three. There-
fore, we aim to facilitate virtual networks that pro-
vide the appearance of layer-two connectivity between
each virtual node. This function provides the illusion
of point-to-point connectivity between pairs of virtual
nodes. Alternatives, for achieving this design goal, are
tunneling/encapsulation, rewriting packet headers, or
redirecting packets based on virtual MAC addresses.
In Section 3, we justify our design decision to use redi-
rection.

2. Fast forwarding. The infrastructure should forward
packets as quickly as possible. To achieve this goal,
we push each virtual node’s forwarding tables to hard-
ware, so that the interface card itself can forward
packets on behalf of the virtual node. Forwarding
packets directly in hardware, rather than passing each
packet up to a software routing table in the virtual
context, results in significantly faster forwarding rates,
less latency and higher throughput. The alternative—
copying packets from the card to the host operating
system—requires copying packets to memory, servic-
ing interrupts, and processing the packet in software,
which is significantly slower than performing the same
set of operations in hardware.

3. Resource guarantees per virtual network. The virtu-
alization infrastructure should be able to allocate spe-
cific resources (bandwidth, memory) to specific virtual
networks. Providing such guarantees in software can
be difficult; in contrast, providing hard resource guar-
antees in hardware is easier, since each virtual net-
work can simply receive a fixed number of clock cy-
cles. Given that the hardware forwarding infrastructure
has a fixed number of physical interfaces, however, the
infrastructure must also determine how to divide re-
sources across the virtual interfaces that are dedicated
to a single physical interface.

The next section describes the hardware architecture that al-
lows us to achieve these goals.

3. Design and Implementation
This section describes our design and implementation of

a hardware-based virtual data plane. The system associates
each incoming packet with a virtual environment and for-
warding table. In contrast to previous work, the hardware

itself makes forwarding decisions based on the packet’s as-
sociation to a virtual forwarding environment; this design
provides fast, hardware-based forwarding for up to eight vir-
tual routers running in parallel on shared physical hardware.
By separating the control plane for each virtual node (i.e., the
routing protocols that compute paths) from the data plane
(i.e., the infrastructure responsible for forwarding packets)
each virtual node can have a separate control plane, inde-
pendent of the data plane implementation.

Overview In our current implementation, each virtual envi-
ronment can have up to four virtual ports; this is a charac-
teristic of our current NetFPGA-based implementation, not
a fundamental limitation of the design itself. The physical
router has four output ports and, hence, four output queues.
Each virtual MAC is associated with one output queue at
any time, this association is not fixed and changes with each
incoming packet. Increasing the number of output queues,
allows us to increase the number of virtual ports per virtual
router. The maximum number of virtual ports then depends
on how much resources we have to allocate for the output
queues. In addition to more output queues we would also
need to increase the size of VMAC-VE (Virtual MAC to
Virtual Environment) mapping table and the number of con-
text registers associated with a particular instance of virtual
router. There are four context registers for each virtual router
and they are used to add source MAC addresses for each out-
going packet, depending upon the outgoing port of packet.

Each virtual port on the NetFPGA redirects the packet to
the appropriate virtual environment or forward the packet
to the next node, depending on the destination address and
the packet’s association to a particular virtual environment.
We achieve this association by establishing a table that maps
virtual MAC addresses to virtual environment. These virtual
MAC addresses are the addresses assigned by the virtual en-
vironment owner and can be changed any time. By doing so,
the system can map traffic from virtual links to the appropri-
ate virtual environments without any tunneling.

In the remainder of this section, we describe the system
architecture. First, we describe the control plane, which al-
lows router users to install forwarding table entries into the
hardware, and how the system controls each virtual envi-
ronment’s access to the hardware. Next, we describe the
software interface between processes in each virtual envi-
ronment and the hardware. Finally, we describe the system’s
data path, which multiplexes each packet into the appropri-
ate virtual environment based on its MAC address.

3.1 Control Plane
The virtual environment contains two contexts: the virtual

environment context (the “router user”) and the root con-
text (the “super user”). The router user has access to the
container that runs on the host machine. The super user
can control all of the virtual routers that are hosted on the
FPGA, while router users can only use the resources which
are allocated to them by the super user. Our virtual router
implementation has a set of registers in FPGA, that provides
access to the super user and to the router users. This separa-
tion of privilege corresponds to that which exists in a typical
OpenVZ setup, where multiple containers co-exist on a sin-

2

NetFPGAHost

VE1
Routing
Table 1

OpenVZ
VR Daemon

RT1 to RT8

VE2
Routing
Table 2

Upto 8 hosts

VE3
Routing
Table 3

VE4
Routing
Table 4

Security Daemon

VE5
Routing
Table 5

VE6
Routing
Table 6

VE7
Routing
Table 7

VE8
Routing
Table 8

Upto 8 hosts Upto 8 hosts Upto 8 hosts

Figure 1: OpenVZ and virtual router.

gle physical machine, but only the user in the root context
has access to super user privileges.

Virtual environments As in previous work (e.g., Trel-
lis [4]), we virtualize the control plane by running multiple
virtual environments on the host machine. The number of
OpenVZ environments is independent of the virtual routers
sitting on FPGA, but the hardware can support at most eight
virtual containers. Each container has a router user, which
is the root user for the container; the host operating system’s
root user has super user access to the virtual router. Router
users can use a command-line based tool to interact with
their instance of virtual router. These users can read and
write the routing table entries and specify their own context
register values.

Each virtual router user can run any routing protocol, but
all the routing table entries update/read requests must pass
through the security daemon and the virtual router daemon
(as shown in Figure 1). The MAC addresses stored in the
context registers must be the same addresses that the virtual
router container uses to reply for the ARP requests. Once a
virtual router user specifies the virtual port MAC addresses,
the super user enters these addresses in the VMAC-VE ta-
ble; this mechanism prevents a user from changing MAC
addresses arbitrarily.

Hardware access control This VMAC-VE table stores all of
the virtual environment ID numbers and their correspond-
ing MAC addresses. Initially, this table is empty to provide
access of a virtual router to a virtual environment user. The
system provides a mechanism for mediating router users’ ac-
cess to the hardware resources. The super user can modify
the VMAC-VE (Virtual MAC and Virtual Environment map-
ping) table. Super user grants the router user access to the
fast path forwarding provided by the hardware virtual router
by adding the virtual environment ID and the corresponding
MAC addresses to the VMAC-VE table. If the super user
wants to destroy a virtual router or deny some users access to
the forwarding table, it simply removes the virtual environ-

ment ID of the user and its corresponding MAC addresses.
Access to this VMAC-VE table is provided by a register file
which is only accessible to super user.

Control register As shown in Figure 1, each virtual environ-
ment copies the routing table from its virtual environment to
shared hardware. A 32-bit control register stores the virtual
environment ID that is currently being controlled. When-
ever a virtual environment needs to update its routing tables,
it sends its request to virtual router daemon. After verifying
the virtual environment’s permissions, this daemon uses the
control register to select routing tables that belong to the re-
questing virtual environment and updates the IP lookup and
ARP table entries for that particular virtual environment. Af-
ter updating the table values, daemon resets the control reg-
ister value to zero.

3.2 Software Interface
As shown in Figure 1, the security daemon prevents unau-

thorized changes to the routing tables by controlling access
to the virtual router control register. The virtual router con-
trol register is used to select the virtual router for forward-
ing table updates.The security daemon exposes an API that
router users can use to interact with their respective routers,
including reading or writing the routing table entries. Apart
from providing secure access to all virtual router users, the
security daemon logs user requests to enable auditing.

The software interface provides a mechanism for pro-
cessing packets using software exceptions. The hardware-
based fast path cannot process packets with the IP options
or ARP packets, for example. These packets are sent to vir-
tual router daemon without any modifications, virtual router
daemon,also maintains a copy of VMAC-VE table. It looks
at the packet’s destination MAC and sends the packet to the
corresponding virtual environment running on the host envi-
ronment. Similarly, when the packet is sent from any of the
containers, it first received by virtual router daemon through
the security daemon, which sends the packet to the respec-
tive virtual router in hardware for forwarding.

The super user can interact with all virtual routers via a
command-line interface. Apart from controlling router user
accesses by changing the VMAC-VE table, the super user
can examine and modify any router user’s routing table en-
tries using control register.

3.3 Data Plane
To provide virtualization in a single physical router, the

router must associate each packet with its respective virtual
environment. To determine a packet’s association with a par-
ticular virtual environment, the router uses virtual environ-
ment’s MAC address; this MAC address as described ear-
lier, apart from allowing/denying access to the virtual router
users, the VMAC-VE table determines how to forward pack-
ets to the appropriate virtual environment, as well as whether
to forward or drop the packet.

Mapping virtual MACs to destination VEs Once the table
is populated and a new packet arrives at the virtual router,
its destination MAC is looked up in VMAC-VE table, which
provides mapping between the virtual MAC addresses and

3

Figure 2: Virtual router table mappings.

virtual environment IDs. Virtual MAC addresses in VMAC-
VE table correspond to the MAC addresses of the virtual eth-
ernet interfaces used by virtual environment. A user has ac-
cess to four registers, which can be used to update the MAC
address of user’s choice. These MAC addresses must be the
same as the MAC addresses of virtual environment. Since
there are four ports on NetFPGA card each virtual environ-
ment has a maximum of four MAC addresses inside this ta-
ble; this is only limitation of our current implementation. As
explained earlier, increasing the number of output queues
and context registers will permit each virtual environment
to have more than four MAC addresses. The system uses
a CAM-based lookup mechanism to implement the VMAC-
VE table. This design choice makes the implementation in-
dependent of any particular vendor’s proprietary technology.
For example, the proprietary TEMAC core from Xilinx pro-
vides a MAC address filtering mechanism, but it can only
support 4 to 5 MAC addresses per TEMAC core, and most
importantly it can’t provide demuxing of the incoming pack-
ets to the respective VE.

Packet demultiplexing and forwarding In the current im-
plementation, all four physical ethernet ports of the router
are set into promiscuous mode, which allows the interface
receive any packet for any destination. After receiving the
packet, its destination MAC address is extracted inside the
virtual router lookup module, as shown in Figure 2. If there
is a match in the table, the packet processed and forwarded;
otherwise, it is dropped.

This table lookup also provides the virtual environment ID
(VE-ID) that is used to switch router context for the packet
which has just been received. In a context switch, all four
MAC addresses of the router are changed to the MAC ad-
dresses of the virtual environment’s MAC addresses. As
shown in Figure 3, the VE-ID indicates the respective IP
lookup module. In the case of IP lookup hit, the MAC ad-
dress of next hop’s IP is looked up in ARP lookup table.
Once the MAC address is found for the next hop IP, the
router needs to provide the source MAC address for the out-
going packet. Then, context registers are used to append the
corresponding source MAC address and send the packet.

Based on the packet’s association with a VE, the con-
text register values are changed that correspond to the four

MAC addresses for virtual router in use. The router’s con-
text remains active for the duration of a packet’s traversal
through FPGA and changes when the next incoming packet
arrives. Each virtual port appears one physical port with its
own MAC address. Once the forwarding engine decides a
packet’s fate, it is directed to the appropriate output port.
The outgoing packet must have the source MAC address that
corresponds to the virtual port that sends the packet. To pro-
vide each packet with its correct source MAC address, the
router uses context registers. The number of context regis-
ters is equal to the number of virtual ports associated with the
particular router. The current implementation uses four reg-
isters, but this number can be increased if the virtual router
can support more virtual ports.

Shared functions Our design maximizes available resources
to share different resources with other routers on the same
FPGA. It only replicates those resources which are really
necessary to implement fast path forwarding. To under-
stand virtual router context and its switching with every new
packet, we first describe the modules that can be shared in
an actual router and modules that cannot be shared. Router
modules that involve decoding of packets, calculating check-
sums, decrementing TTLs, etc. can be shared between dif-
ferent routers, as they do not maintain any state that is spe-
cific to a virtual environment. Similarly, the input queues
and input arbiter is shared between the eight virtual routers.
Packets belonging to any virtual router can come into any of
the input queues and they are picked up by arbiter to be fed
into virtual router lookup module. Output queues are shared
between different virtual routers, and packets from different
virtual routers can be placed in any output queue.

VE-specific functions Some resources can not be shared be-
tween the routers. The most obvious among them is the
forwarding information base. In our current virtual router
implementation we have used, NetFPGA’s reference router
implementation as our base implementation. In this imple-
mentation a packet that needs to be forwarded, needs at least
three information resources namely IP lookup table, MAC
address resolution table and router’s MAC addresses. These
three resources are unique to every router instance and they
can not be removed and populated back again with every
new packet. Therefore, the architecture maintains a copy of
each of these resources for every virtual router. The current
implementation maintains a separate copy of all these re-
sources for every virtual router instantiated inside the FPGA.

4. Discussion and Future Work
In this section, we describe several possible extensions to

the current implementation. Some of these additions come
from making these virtual routers more router like; some
stem from the requirements of extending the current imple-
mentation to better support virtual networks. We believe
that the current implementation must have a minimum set
of these additions to completely function as a virtual router.

The virtualized data plane we have presented could be ex-
tended to support collecting statistics about network traffic
in each virtual network. Today, administrators of physical
networks can obtain the traffic statistics for their respective

4

networks; we aim to provide similar function for virtual net-
works. Extending this function to the NetFPGA requires
adding new function to the current logic on the NetFPGA;
it also entails addressing challenges regarding the efficient
use of the relatively limited memory available on the physi-
cal card itself.

Each physical router user is able to update her forwarding
tables with the frequency of their like. Our current imple-
mentation lacks this feature as once one user tries to update
his/her respective table others are blocked. Allowing con-
current packet forwarding and forwarding-table updates re-
quires a completely different register set interface for each
virtual router to update its respective forwarding table.

Virtual routers must provide speed, scalability and isola-
tion. We have been able to meet the fast forwarding path and
scalability requirements. The hardware-based implementa-
tion provides isolation to the CPU running on the host ma-
chine of the NetFPGA card. However, the current imple-
mentation does not isolate the traffic between different vir-
tual networks: in the current implementation, all virtual net-
works share the same physical queue for a particular physi-
cal interface, so traffic in one virtual network can interfere
with the performance observed by a different virtual net-
work. In an ideal case, no traffic in a different virtual net-
work should affect other virtual router’s bandwidth. In our
ongoing work, we are examining how various queuing and
scheduling discimplines might be able to provide this type
of isolation, while still making efficient use of the relatively
limited available resources.

5. Conclusion
Sharing the same physical substrate among a number of

different virtual networks amortizes the cost of the physical
network; as such, virtualization is promising for many net-
worked applications and services. To date, however, virtual
networks typically provide only software-based support for
packet forwarding, which results in both poor performance
and isolation. The advent of programmable network hard-
ware has made it possible to achieve improved isolation and
packet forwarding rates for virtual networks; the challenge,
however, is designing a hardware platform that permits shar-
ing of common hardware functions across virtual routers
without compromising performance or isolation.

As a first step towards this goal, this paper has presented
a design for a fast, virtualized data plane based on pro-
grammable network hardware. Our current implementa-
tion achieves the isolation and performance of native hard-
ware forwarding and implements shares hardware modules
that are common across virtual routers. Although many
more functions can ultimately be added to such a hard-
ware substrate (e.g., enforcing per-virtual router resource
constraints), we believe our design represents an important
first step towards the ultimate goal of supporting a fast, pro-
grammable, and scalable hardware-based data plane for vir-
tual networks.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. In Proc. 19th ACM Symposium on Operating Systems
Principles (SOSP), Lake George, NY, Oct. 2003.

[2] A. Bavier, M. Bowman, D. Culler, B. Chun, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating
System Support for Planetary-Scale Network Services. In Proc. First
Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, CA, Mar. 2004.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI Veritas: Realistic and Controlled Network Experimentation. In
Proc. ACM SIGCOMM, Pisa, Italy, Aug. 2006.

[4] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V. Valancius,
A. Bavior, N. Feamster, L. Peterson, and J. Rexford. Trellis: A
Platform for Building Flexible, Fast Virtual Networks on Commodity
Hardware. In 3rd International Workshop on Real Overlays &
Distributed Systems, Oct. 2008.

[5] Cisco Multi-Topology Routing.
http://www.cisco.com/en/US/products/ps6922/
products_feature_guide09186a00807c64b8.html.

[6] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in
your spare time. ACM Computer Communications Review,
37(1):61–64, 2007.

[7] JunOS Manual: Configuring Virtual Routers.
http://www.juniper.net/techpubs/software/erx/
junose72/swconfig-system-basics/html/
virtual-router-config5.html.

[8] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. NetFPGA–An Open Platform for
Gigabit-Rate Network Switching and Routing. In IEEE International
Conference on Microelectronic Systems Education, pages 160–161.
IEEE Computer Society Washington, DC, USA, 2007.

[9] Juniper Networks: Intelligent Logical Router Service.
http://www.juniper.net/solutions/literature/
white_papers/200097.pdf.

[10] OpenVZ: Server Virtualization Open Source Project.
http://www.openvz.org.

[11] J. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns,
S. Kumar, J. Lockwood, J. Lu, M. Wilson, et al. Supercharging
planetlab: a high performance, multi-application, overlay network
platform. In Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

[12] G. Watson, N. McKeown, and M. Casado. NetFPGA: A tool for
network research and education. In 2nd workshop on Architectural
Research using FPGA Platforms (WARFP), 2006.

5

A Windows Support Framework for the NetFPGA 2
Platform

Chen Tian1,2, Danfeng Zhang1, Guohan Lu1, Yunfeng Shi1, Chuanxiong Guo1, Yongguang Zhang1

1Mircosoft Research Asia
2Huazhong University of Science and Technology

{v-tic, v-daz, lguohan, v-yush, chguo, ygz}@microsoft.com

ABSTRACT
The NetFPGA 2 platform is widely used by the network-
ing research and education communities. But the current
software package supports only Linux. This paper describes
the development of a Windows Support Framework for the
NetFPGA 2 platform. We present the Windows Support
Framework design after we briefly introduce the Windows
Network Driver Interface Specification (NDIS). We then de-
scribe the implementation details such as drivers structure,
the packet send/receive procedures, and the user-mode tool
kit. Experiments show that our implementation achieves
160Mb/s sending rate and 230Mb/s receiving rate, respec-
tively. We hope the Windows Support Framework brings
NetFPGA to those researchers and students who are familiar
with the Windows operating system.

1. INTRODUCTION
The NetFPGA 2 platform enables researchers and

students to prototype high-performance networking sys-
tems using field-programmable gate array (FPGA) hard-
ware [5]. As a line-rate, flexible, and open platform,
it is widely accepted by the networking community:
over 1,000 NetFPGA systems have been shipped and
many innovative networking designs have been imple-
mented [1, 3]. But currently the platform only supports
Linux, and the developments of NetFPGA projects are
limited to the Linux environments. Given the dominant
market share of the Windows operating system, adding
support for Windows will help those researchers and
students who are familiar with the Windows system.

In this paper, we describe the design and implemen-
tation of our Windows Support Framework(WSF) for
NetFPGA 2. The WSF is driven by both the require-
ments of our Windows-based testbed in Microsoft Re-
search Asia and the community benefits. Windows Sup-
port Framework has two components:

• Kernel Drivers. A suit of kernel mode device drivers
that enable the deployment of NetFPGA 2 plat-
form in the Windows operating system.

• User-Mode Tool Kit. Common development func-

Figure 1: NDIS architecture

tions such as registers reading/writing, FPGA bit-
file downloading, and packet injecting/intercepting,
are implemented as user mode tools.

The rest of the paper is organized as follows. In Sec-
tion 2, we first briefly introduce the Windows network
driver architecture, and then present the support frame-
work design. We describe the implementation details
such as important routines of kernel drivers and the
packet send/receive procedures in Section 3. We present
experimental results in Section 4. Section 5 concludes
the paper and discusses future work.

2. DESIGN

2.1 Windows Network Driver Architecture
The Windows operating system use Network Driver

Interface Specification (NDIS) architecture to support
network devices and protocols. Based on the OSI seven-

1

layer networking model, the NDIS library abstracts the
network hardware from network drivers. NDIS also
specifies the standard interfaces between the layered
network drivers, thereby abstracting lower-level drivers
that manage hardware for upper-level drivers. To sup-
port the majority of Windows users, we design WSF
drivers to conform with NDIS version 5.1, which is Win-
dows 2000 backward compatible. Most drivers are writ-
ten in Kernel-Mode Driver Framework(KMDF) style,
which provides object-based interfaces for Windows dri-
vers [4].

As we show in Fig. 1, there are three primary network
driver types [4]:

• Miniport Drivers. A Network Interface Card(NIC)
is normally supported by a miniport driver. An
NDIS miniport driver has two basic functions: man-
aging the NIC hardware, including transmiting and
receiving data; interfacing with higher-level drivers,
such as protocol drivers through the NDIS library.
The NDIS library encapsulates all operating sys-
tem routines, that a miniport driver must call, to a
set of functions (NdisMXxx() and NdisXxx() func-
tions). The miniport driver, in turn, exports a
set of entry points (MiniportXxx() routines) that
NDIS calls for its own purposes or on behalf of
higher-level drivers to send down packets.

• Protocol Drivers. Transport protocols, e.g. TCP-
/IP stack, are implemented as protocol drivers.
At its upper edge, a protocol driver usually ex-
ports a private interface to its higher-level drivers
in the protocol stack. At its lower edge, a protocol
driver interfaces with miniport drivers or interme-
diate network drivers. A protocol driver initial-
izes packets, copies sending data from the applica-
tion into the packets, and sends the packets to its
lower-level drivers by calling NdisXxx() functions.
It must also exports a set of entry points (Pro-
tocolXxx() routines) that NDIS calls for its own
purposes or on behalf of lower-level drivers to in-
dicate up received packets.

• Intermediate Drivers. Intermediate drivers are lay-
ered between miniport drivers and transport pro-
tocol drivers. They are used to translate between
different network media or map virtual miniports
to physical NICs. An intermediate driver exports
one or more virtual miniports at its upper edge.
To a protocol driver, a virtual miniport that was
exported by an intermediate driver appears to be
a real NIC; when a protocol driver sends pack-
ets to a virtual miniport, the intermediate driver
propagates these packets to an underlying mini-
port driver. At its lower edge, the intermediate
driver appears to be a protocol driver to an under-
lying miniport driver; when the underlying mini-

Figure 2: The structure of the kernel mode
drivers.

port driver indicates received packets, the inter-
mediate driver propagates the packets up to the
protocol drivers that are bound to its virtual mini-
port.

2.2 The NDIS Kernel Drivers
As a PCI board, NetFPGA card has a memory space

for PCI configuration information. The information de-
scribes the hardware parameters of the devices on the
board. The configuration of the NetFPGA reference
design contains only one PCI device. All four Ether-
net ports share the same interrupt number, and tran-
mit/receive over their own DMA channels.

Supporting four NetFPGA Ethernet Ports in Linux
is relatively simple. During the initialization phase, the
Linux driver calls system routine register netdev() four
times to register NetFPGA ports as four distinct logical
Ethernet devices.

Network driver support in NDIS 5.1 context is more
sophisticated, mainly due to Plug-and-Play (PnP) and
power management. The initialization process of a net-
work device is managed by the Plug-and-Play(PnP)
manager, hence one NetFPGA card can register only
one logical Ethernet device. Apparently, one miniport
driver alone is not enough to support four ports of NetF-
PGA in NDIS 5.1 context. We need an additional inter-
mediate driver to map one single NetFPGA PCI card
to four virtual Ethernet miniports.

As shown in Fig 2, the NDIS Kernel Driver of NetF-
PGA has three driver modules. From bottom-up, the
PCI Device Driver (PDD) directly interfaces with the
hardware and provides I/O services, such as DMA op-
erations and access of registers; the Ethernet Interface
Driver (EID) registers the NetFPGA card as a logical

2

Figure 3: User mode/kernel mode Communica-
tion.

Ethernet device in response to PnP manager; these two
drivers can be regarded as two submodules of a sin-
gle NDIS miniport driver. The Mapping Service Driver
(MSD) is an intermediate driver, which maps the un-
derlying NetFPGA device to four virtual miniports and
exports them to upper layer protocols.

The physical ports and virtual miniports maintain
an exact match relationship. Every packet received by
PDD is associated with its network port number; EID
indicates the packet up together with the port; the MSD
then indicates the packet to the corresponding virtual
miniports. For the packet sending procedure, the order
is reversed.

2.3 User-Mode Tool Kit
Besides kernel mode drivers, developers need to down-

load FPGA bitfiles, or read/write registers for their own
purpose. Basically, the main operations of bitfile down-
load are also registers reading and writing. Communica-
tions between user mode tools and kernel mode drivers
are needed to pass values up and down. As shown in
Fig 3, each driver exports an associated symbolic de-
vice name: applications can open a driver handle by
calling a CreateFile() routine; the communications can
then be performed by calling DeviceIoControl() func-
tion and passing the I/O control commands down and
reading the reported data back to applications.

To facilitate packet analysis of user derived protocols,
packet injecting/intercepting functions are also imple-
mented. All these implementation details will be given
in the next section.

3. IMPLEMENTATION
This section gives implementation details. First the

important routines of the three drivers are presented;
then the complete packet send/receive procedures are
illustrated to help understanding the asynchronous in-
teractions among drivers; finally the implementation
details of the development tool kit are also presented.

3.1 PCI Device Driver

The PCI Device Driver takes KMDF PCI9x5x exam-
ple of Windows Driver Kit [4] as its template. PDD
provides asynchronous hardware access interfaces to its
upper layer EID module. The important routines are
listed below:

• During device initialization, callback routine PCIE-
EvtDeviceAdd() is called in response to Windows’
PnP manager. The routine registers all the call-
backs and allocates software resources required by
the device; the most important resources are Write-
Queue and PendingReadQueue, which will serve
write/read requests later.

• After the PnP manager has assigned hardware re-
sources to the device and after the device has en-
tered its uninitialized working (D0) state, callback
routine PCIEEvtDevicePrepareHardware() is called
to set up the DMA channels and map memory re-
sources, make the device accessible to the driver.

• Each time the device enters its D0 state, callback
routine PCIEEvtDeviceD0Entry() is called just be-
fore the enable of hardware interrupt; the Net-
FPGA card registers are initialized here.

• When NetFPGA generates a hardware interrupt,
the driver’s Interrupt Service Routine (ISR) PCIE-
EvtInterruptIsr() quickly save interrupt informa-
tion, such as the interrupt status register’s content,
and schedules a Deferred Procedure Call (DPC) to
process the saved information later at a lower In-
terrupt Request Level(IRQL).

• DPC routine PCIEEvtInterruptDpc() is scheduled
by ISR. This routine finishes the servicing of an
I/O operation.

• In response to a write request, callback routine
PCIEEvtProgramWriteDma() programs the Net-
FPGA device to perform a DMA transmit transfer
operation.

3.2 Ethernet Interface Driver
The Ethernet Interface Driver takes KMDF ndisedge

example as its template. To its lower edge, it interfaces
with PDD by I/O request packets (IRPs) operations;
to its upper edge, it acts as a standard Ethernet device.
The important routines are listed below:

• The driver’s entry routine DriverEntry() calls NDIS
function NdisMRegisterMiniport() to register the
miniport driver’s entry points with NDIS.

• Callback routine MPInitialize() is the entry point
of Initialize Handler. Called as part of a system
PnP operation, it sets up a NIC for network I/O
operations, and allocates resources the driver needs
to carry out network I/O operations.

3

• Callback routine MPSendPackets() is the entry
point of Send Packets Handler. An upper layer
protocol sends packets by calling NDIS function
NdisSendPackets(). NDIS then calls this routine
on behalf of the higher-level driver. This routine
prepares write resources and initiates a write re-
quest. The port number is associated with the re-
quest by WdfRequestSetInformation() operations.

• NICReadRequestCompletion() is the completion ro-
utine for the read request. This routine calls NDIS
function NdisMIndicateReceivePacket() to indicate
the received packet to NDIS. The receive port num-
ber is associated with the packet by saving it in
the MiniportReserved field of the NDIS PACKET
structure.

3.3 Mapping Service Driver
The Mapping Service Driver takes the famous MUX

intermediate driver as its template. A MUX interme-
diate driver can expose virtual miniports in a one-to-n,
n-to-one, or even an m-to-n relationship with underly-
ing physical devices. One challenge is how to configure
the protocol binding relationships: only a NetFPGA
card is legal to be bound to this intermediate driver
and to export four virtual miniports. We achieve this
goal by modifying the accompanying installation DLL
component.

The important routines are listed below:

• Callback routine MPInitialize() is the entry point
of virtual miniport Initialize Handler. The MAC
addresses of virtual miniports are read from the
corresponding registers during the initialization ph-
ase.

• Similar to its counterpart of EID, callback routine
MPSendPackets() is the entry point of Send Pack-
ets Handler. The send port number is associated
with the packet by saving it in the MiniportRe-
served field of NDIS PACKET structure.

• Callback routine PtReceivePacket() is the entry
point of Receive Packet Handler. This routine
associates each packet with its corresponding vir-
tual miniport and call NDIS function NdisMIndi-
cateReceivePacket() to indicate it up.

3.4 Packet Sending Procedure
Fig 4 gives the life cycle of a sending packet.

1. When an application wants to send data, the up-
per layer transport protocol prepares packets and
calls NDIS function NdisSendPackets(); a packet
is passed by NDIS to a corresponding virtual mini-
port interface of MSD.

2. NDIS calls MSD’s callback routine MPSendPack-
ets() with the packet; this routine associates the

corresponding send port with the packet, then call
NdisSendPackets() to pass the packet down to EID.

3. The NIC write request can be initiated asynchrono-
us when a packet is ready. NDIS calls MSD’s call-
back routine MPSendPackets() with the packet.
This routine prepares write resources and initiates
an asynchronous write request to PDD.

4. Upon receiving a write request, the PDD callback
routine PCIEEvtProgramWriteDma() acquires a
transmit spinlock to obtain DMA control; after
that, a new DMA transmit transfer can be started.

5. After the completion of the DMA transmit trans-
fer, the INT DMA TX COMPLETE bit is set in
a physical interrupt; the ISR reads the status and
schedules a DPC; the DPC routine informs EID
of the write request completion and releases the
spinlock.

6. The EID’s completion routine for the write request
NICWriteRequestCompletion() is called; it frees
write resources and calls NDIS function NdisM-
SendComplete() to inform the upper layer MSD.

7. Consequently the MSD’s send completion callback
routine PtSendComplete() is triggered by NDIS,
and it also calls NdisMSendComplete() to inform
its upper layer transport protocol.

8. On behalf of MSD, NDIS calls the upper layer pro-
tocol’s callback routine ProtocolSendComplete(),
the packet send process is finally completed.

3.5 Packet Receiving Procedure
For packet receiving, Fig 5 gives the life cycle of a

packet.

1. After initialization, EID posts a sequence of NIC
read requests to PDD in advance.

2. When a packet arrives, the INT PKT AVAIL bit
is set in a physical interrupt; the ISR reads the
status and schedules a DPC; the PDD DPC rou-
tine dequeues a read request, acquires a receive
spinlock to obtain DMA control; after that, a new
DMA receive transfer can be started.

3. After the packet is received, the INT DMA RX
COMPLETE bit is set in a physical interrupt;
the ISR reads the status and schedules a DPC;
the PDD DPC routine informs EID of the read
request completion and releases the spinlock.

4. The EID’s completion routine for the read request
NICReadRequestCompletion() is called; the rou-
tine associates the corresponding receive port with
the packet, then calls NDIS function NdisMIndi-
cateReceivePacket() to inform its upper layer driver
MSD.

4

Figure 4: Packet sending procedure.

Figure 5: Packet receiving procedure.

5. The MSD’s callback routine PtReceivePacket() is
called by NDIS; the routine matches the packet to
its corresponding virtual miniport and also indi-
cates the packet up by NDIS function NdisMIndi-
cateReceivePacket();

6. After the packet data is received, the upper layer
protocol calls NDIS function NdisReturnPacket().

7. Consequently the MSD’s receive completion call-
back routine MPReturnPacket() is triggered by
NDIS, and it also calls NdisReturnPacket() to in-
form its lower layer driver EID.

8. The EID’s callback routine MPReturnPacket() is
called by NDIS, and the packet receive process is
finally completed.

3.6 Implementation Details of the Tool Kit
The registers read and write operations are shown in

Fig 6(a): an I/O control command is issued to EID first;
the EID then builds an internal IRP and recursively
calls the lower PDD to complete the request.

The packet injecting/intercepting functions are im-
plemented in the MSD, as shown in Fig 6(b). After re-
ception of a packet from the application level tool, the
routine PtSend() routine injects the packet into outgo-
ing packet flow path. A boolean value is associated
with each packet send request to distinguish the in-
jected packets from normal packets; in step (7) of Fig 4
when callback routine PtSendComplete() is called, only
the completion of normal packets are required to be re-
ported to upper layer protocols.

The packet interception logic is embedded in step (5)

5

Figure 6: (a) Register Read/Write. (b) Packet Intercept/Inject.

of Fig 5. The interception kit posts a sequence of read
IRPs to MSD in advance. In routine PtReceivePacket(),
every incoming packet is checked first; the decision can
be drop, modify, copy up to user mode kit, or continue
without intervention.

4. FOR USERS OF WSF

4.1 Package
The package of WSF can be downloaded from our

group web site [2]. The source code of both NDIS kernel
drivers and user mode tool kits are included. Users
who want to write a Windows program that interfaces
with the NetFPGA can take the source code as their
template.

An installation manual is included [6] in the pack-
age to guide the preparation of users and illustrate the
use of the WSF from a users perspective. Some usage
examples are also given for tool kits in the manual .

4.2 Performance
We build the source code using Microsoft Windows

Device Driver Kit (DDK) Release 6001.18001 version.
The experiment servers are DELL optiplex 755 with
Windows Server 2003 Enterprize Edition with service
pack 2. Each server has a 2.33G E6550 Intel Core 2
Duo CPU and 2 GB memory. The iperf software [7] is
selected to perform the test with the 1500 bytes packets.

The forwarding performance is not affected by oper-
ating systems. So we only test the send/receive through-
put of NetFPGA equipped host. In our experiment, the
two servers connect to a gigabit switch using one NetF-
PGA port. Both 32-bit/64-bit performance are evalu-
ated. The results are shown in Table. 1.

The host throughput achievable by Windows drivers
are lower than that in Linux environment. The rea-

Throughput Send (Mb/s) Receive (Mb/s)
Win2003 x86 158 234
Win2003 x64 156 233
Linux 186 353

Table 1: Throughput of experiments.

son is that we implement the NetFPGA roles(PCI de-
vice/Network device/Port Mapping) to three separate
drivers: each send/receive packet must pass through
three drivers. A future version(Discussed in Section 5)
may compact all functions to a single driver to improve
host throughput. However the NetFPGA community
is focused on hardware forwarding engine, which may
make this throughput performance still acceptable.

5. CONCLUSION
We have presented the design and implementation

of a Windows Support Framework for the NetFPGA 2
Platform. We hope the Windows Support Framework
brings NetFPGA to those researchers and students who
are familiar with the Windows operating system.

The Windows Support Framework for NetFPGA 2
Platform is still in active development. Our future
works may include but not limit to:

• Migrate to NDIS 6.0. Many new features are pro-
vided in NDIS 6.0 version, and we have a chance
to compact all functions to a single driver and at
the same time improve performance.

• Support new NetFPGA hardware. We plan to port
our implementation to support the upcoming 10G
NetFPGA once it becomes available.

6. REFERENCES

6

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A
Scalable, Commodity Data Center Network
Architecture. In Proc. SIGCOMM, 2008.

[2] Data Center Networking at MSRA.
http://research.microsoft.com/en-
us/projects/msradcn/default.aspx.

[3] Dilip Antony Joseph, Arsalan Tavakoli, Ion Stoica,
Dilip Joseph, Arsalan Tavakoli, and Ion Stoica. A
policy-aware switching layer for data centers, 2008.

[4] MSDN. Microsoft windows driver kit (wdk)
documentation, 2008.

[5] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for
Experimental Research. In PRESTO, 2008.

[6] Chen Tian. Netfpga windows driver suite
installation.

[7] Ajay Tirumala, Les Cottrell, and Tom Dunigan.
Measuring end-to-end bandwidth with iperf using
web100. In Proc. of Passive and Active
Measurement Workshop, page 2003, 2003.

7

	Title Page

	Table of Contents
	Photographs of Event

	State of NetFPGA Program

	NetFPGAs in Cambridge

	zFilter Sprouter
	Blooming Tree

	URL Extraction

	DFA RegEx

	High-Level - G/PaX
	NetThreads

	Precise Traffic Generator

	AirFPGA - SDR
	Fast Reroute and Multipath

	Open Network Lab
	KOREN Testbed

	Virtualized Data Plane
	Windows Support

